
Università di Pisa

Corso di Laurea in Informatica

Tesi di Laurea

NEUROLOGICAL MODEL
APPLICATIONS

IN IMAGE PROCESSING

Relatore: Candidato:
Prof. Vincenzo Gervasi Mario Viti

Anno Accademico 2014-2015

Contents

1 Introduction 3
1.1 Neurological model and computer science 3
1.2 The experiment . 4
1.3 LossLess and Lossy compression . 4

2 Compression Methods 5
2.1 Entropy . 5

2.1.1 Definition . 5
2.2 Loss less compression . 5

2.2.1 Huffman coding . 6
2.2.2 LZW compression . 7

2.3 Lossy compression . 9
2.3.1 DCT discrete cosine transform 9

3 Compression of Big Streams of Data in HEP 12
3.1 HEP experiments . 12

3.1.1 LHC data analysis and filtering 13
3.1.2 Similarities with the neurological model 14

3.2 M. Del Viva Neurological Model . 14
3.2.1 Model . 14
3.2.2 Algorithm . 15

3.3 Implementations . 16
3.3.1 Complexity . 17
3.3.2 Algorithms for pattern matching 17
3.3.3 CAM in general purpose architecture 18
3.3.4 Custom Hardware . 20

1

Contents

4 Image compression with Del Viva Model 23
4.1 Experimenting on Medical Images 24

4.1.1 Medical Imaging . 24
4.2 Data Analysis methods and key words 25
4.3 Implementation and format . 26

4.3.1 Compression and performances 27

5 Conclusions 31
5.1 Compression results . 31
5.2 Possible image processing applications 31
5.3 Threats . 32

5.3.1 Image processing known weakness 32
5.3.2 Overlapping patterns . 32
5.3.3 Scalability . 33
5.3.4 Overfitting . 34

5.4 Next . 34
.1 Appendix . 35

.1.1 Function Study . 35
.2 Ringraziamenti . 35

Bibliography 36

2

Chapter 1

Introduction

Maria M. Del Viva1, Giovanni Punzi2, Daniele Benedetti3 presented a neurological
model to describe the general workings of vision [3]. Vision is presented as a two
phases process: a low level early vision phase in which images are acquired and an
high level cognitive phase in which visual stimuli are assigned meaning as objects.
This study shows that the difference between the bandwidth of photoreceptors in
early vision and the rate at which neuron spikes in the cognitive phase highlights the
existence of a bottleneck, this bottleneck can be understood in terms of information
compression on fast streams of data. In applying this lossy compression method to
image processing, only meaningful visual patterns are conserved.

1.1 Neurological model and computer science

The presented model of vision links to various areas of computer science. The
notion of bandwidth is related to computer’s architecture design and hardware units
communication and lossy compression is a methodology touching signal processing
and information theory. The very principle of the presented model is the meaningful
information definition by means of Shannon’s entropy.

1NEUROFARBA Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del
Bambino Sezione di Psicologia, Universita‘ di Firenze, Firenze, Italy, IMB University of Chicago,
Chicago, Illinois, United States of America

2Dipartimento di Fisica “E. Fermi” Universita‘ di Pisa, Pisa, Italy, Fermi National Accelerator
Laboratory, Batavia, Illinois, United States of America

3NEUROFARBA Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del
Bambino Sezione di Psicologia, Universita‘ di Firenze, Firenze, Italy, Dipartimento di Fisica “E.
Fermi” Universita‘ di Pisa, Pisa, Italy

3

1.2. The experiment

1.2 The experiment

The image processing capabilities of the presented model are investigated at INFN4.
The Team experimenting on FTK5 at the University of Pisa has been researching
on image processing for an new possible applications outside of the main HEP6

goals project7. An interesting field in which technology developed for HEP may be
successful is medical imaging, particularly cerebral MRI8. This project has been
carried out during the period of one month, over which, our contribute was to
generate software implementation of the presented method as an "offline" simulation
of the hardware logic experimenting on MRI images.

1.3 LossLess and Lossy compression

This work also aims to collect some flavours of different approaches to compression.
There are mainly two families of methods: lossy and lossless. Lossless compression
exploits pattern’s redundancy of data layout. These methods are general and can
be applied to multimedia in a straightforward fashion. Also Lossy compression’s
methods exploits redundancy of patterns, applying statistical analysis in order to
minimize space and using ad hoc metrics decide whether a pattern has a negligible
contribution to the overall information content; if so it is discarded hence the
method is lossy. Usually ad hoc metrics are bound to media format therefore
this methods do not share the property of generality with the lossless family.
The statistical knowledge can be acquired on seen/known uncompressed data to
compress unseen/unknown data. The presented model describes a recipe for lossy
compression but without any constraints on the choice of ad hoc metrics. Lately in
HEP9 it has been introduced the notion of lossy compression to deal and analyze
the massive streams of data produced by the LHC10.

4Istituto Nazionale di Fisica Nucleare
5FastTracker a project woriking on experiments at the Large Hadron Collider
6High Energy Physics
7Fast Tracker for Hadron Collider Experiment, FP7-PEOPLE-2012-IAPP An FP7 IAPP

project (February 1, 2103 - January 31, 2017): Grant Agreement Number 324318
8Magnetic Resonance Images
9High Energy Physics

10Large Hadron Collider

4

Chapter 2

Compression Methods

Claude Shannon gave his contribution to the problem of compression by providing
an hard limit for signal processing and data compression [7]. This study also found
many application in other fields as it provided the general definition of information:
a shared concept among scientific fields.1.

2.1 Entropy

The notion of entropy in information theory provides an unambiguous definition for
information. Entropy measures information exactly and quantifies the uncertainty
in occurring of a specific message over a communication, avoiding fuzzy notions.

2.1.1 Definition

Let X being a d.r.v X ∈ χ, X ∼ p. The entropy of the d.r.v. X is denoted by
H(X) = −

∑
x∈χ p(x) logb p(x).

The unit of measure of H in case of b = 2 is bits, in such case communication
uses a minimal alphabet of just two symbols {0, 1}. H is used to predict the length
in bits of a particular message in a communication given the p(x).

2.2 Loss less compression

Lossless compression produces perfectly identical data as the original, without
loosing any bit. As the encoding of data decides a fixed number of bits to represent

1It has been used in literature experimental studies to measure obsolescence of texts

5

2.2. Loss less compression

a symbol composing a message and because symbols in messages may reoccur: a
simpler more minimal encoding can be created to save data. The lossless compression
methods are also known as entropy encoding.

2.2.1 Huffman coding

This method has been proven to be optimal in coding an ensemble of messages
consisting of a finite number of symbols. The minimum redundancy code is
constructed in such way that it minimizes the number of coding digits per message
[5] and that is as close as possible to the minimum bound: entropy.

Procedure To compress a message, first the set of symbols or Alphabet have to
be produced, this is the set of different symbols used in the message. The simplest
procedure to obtain the Huffman tree has a Θ(n+ logn) = θn complexity, with n
being the length of the message, it is attained by using a priority queue where the
node with lowest frequency is given highest priority: steps are:

1. create the queue as list of symbols

2. while there’s more than one node in the queue

2.1. create a new node having as children 2 nodes with the lowest frequency
(highest priority) and add it to the queue

2.2. remove children from the queue (pointers preserved in the node)

This encoding is proven to be optimal as it is the shortest path on the Huffman
tree (Fig.2.1) and is the minimum encoding that can be unambiguously interpreted.
The compressed data is therefore attained by then replacing original symbols with
the ones generated by the encoding. The decompression phase is done by means of
the compression tree, pre pending the tree to the compressed data may introduce a
significant spatial overhead in some instances. The worst case is the encoding of an
dictionary (ASCII) in which all symbols have uniform probability (or frequency)
the output returned minimal encoding will be the same as the one provided as
input. The main issue with this method is that it is static and to be adaptive
meaning every time data grows a new tree has to be computed, this could imply
a non negligible overhead in time computation, this is known as offline or static
compression method.

6

2.2. Loss less compression

Figure 2.1: Huffman tree encoding of the prhase “Neurological Model Applications in Image Processing”

2.2.2 LZW compression

This method has been presented in 1984 as an automated method to compress
data by exploiting the redundancy in files present on computer systems.[8]. The
study supporting this technology highlighted the fact that only 3/4 of the ASCII
character set were mostly used, and therefore the flexibility of the encoding comes
at the expense of wasting space on hard disks all over the world, the strategy of the
LZW method implied that 1/4 of space used to store documents could be saved.
In the paper, it is shown that using Huffman encoding could have some restriction
in terms of decompression overhead and lacks generality as the frequency has to be
known a priory for a particular type of message (statistical encoders). The most
important part of the LZW compression is the substring identification method.
The greedy approach of parsing all the sub strings as they occur in a stream of
data is the main difference with Huffman trees, as a new substring is encountered
new codes can be created incrementally, making LZW more adaptive then Huffman
encoding.

LZW algorithm

A string s code is created by encoding recursively the substring s = ωK with K
being the rightmost extension character. Assuming there is an encoding table for a
particular set of sub strings, which size depends on bits used to address such table,

7

2.2. Loss less compression

Figure 2.2: LZW compression example shows the STRING TABLE on the left and the logically equivalent
ALTERNTIVE TABLE on the right.

the recursive prefix plus extension character can use less codes to represent the
same data. In ordinary implementation, the ωK encoding takes up to 12 bits (8
for the char K) and 4 for possible substrings prefixes ω.

Compression Every time the substring is recognized from a stream, the code in
the table is replaced with the recursive method, so for example ab is recognized
only because a was already been encoded. The principal concern of this method
is storing the string table and to make this tractable sub strings in the table are
recorded using the prefix plus extension character encoding, so that each entry has
fixed length.

Decompression The decompression phase logically uses the String table shown
(Fig.2.2)

LZ 77 There are many variants of this method, a particular one does not need
the String table to be stored in memory all at once but it is created as data is
decompressed, therefore there’s an order of decompression, although this might

8

2.3. Lossy compression

save space it has a drawback, data has to be stored following an order, therefore if
I’d like to decompress only a portion of a file I have to decompress the whole file
till the desired point.

Figure 2.3: LZW decomression example shows the decoding of the outputn data, each code is translated
by recursive replacement of the code with a prefix code and extension character

2.3 Lossy compression

Lossy compression inherit most of its theoretical background from signal processing
and it is has been particularly successful for multimedia audio and video compression.
What is compressed is the amount of data needed to reconstruct a signal and what
is preserved is the energy of the signal.

2.3.1 DCT discrete cosine transform

DCT compression is based on transforming the space of the image s in the space of
an image S where each pixel value represent the intensity contribute of a particular
component2 to the overall image. In it’s simplest form a generic transformation
has a complexity of ΘN43 with N being N ×N = # s = # S on images:

S(k1, k2) =

N−1∑
n1=0

N−1∑
n2=0

s(n1, n2)g(n1, n2, k1, k2) (2.1)

the g function is the Kernel on which depends the component that will be
represented in S. Transformation are requested to be invertible by means of the

2depending on the transformation, DCT has cosines as basic components
3FFT has a computational complexity of Θnlogn for the one dimensional case

9

2.3. Lossy compression

inverse kernel h

s(n1, n2) =

N∑
k1=0

N∑
k2=0

S(k1, k2)h(n1, n2, k1, k2) (2.2)

This step is not lossy, it is the quantization step taken on the S space that is
lossy.

g(n1, n2, k1, k2) = g0(n1, k1)g1(n2, k2), gi(ni, ki) = cos(
π(2ni + 1)ki

2N
) (2.3)

0

0

N-1

N-1

Figure 2.4: frequency space diveided into 8x8 basis images or Kernel Images, this is the most used
configuration in jpg images (N = 8) Fig.

This S space derived from the kernel 2.3 is attained by means of ki
N space of

discrete cosines 2d waves lowest to the highest, the actual transformation is the
response or convolution of the image over the frequency space, from Fig. 2.4 can
be also derived the inverse kernel h Fig. 2.2.

The h kernel can be seen as a set of Hk1,k2 matrices each of which will concur
to compose a particular value s(n1, n2), this matrices are called basis images
and they correspond to the images in Fig.2.4. Each pixel in the S image will be
multiplied for one of the basis images NxN .

Complexity This method of transformation have a ΘN4 complexity that can
be reduced to Θ(logNN3) thanks to matrix factorization. In practice the strategy
of applying DCT to 8 × 8 independent patches, reduces "wall clock" time of

10

2.3. Lossy compression

computation by exploiting parallel computation.

JPG DCT transform reformulate the image without applying any compression.
Compression however takes place in the S space in order to have less space comp-
sumption at the cost of loosing only visual details. Once the image s is transformed
into the S image some of the component are cut out because of their low energetic
contribution to the overall image. This depends on the image but its statistically
probable that natural images have low contribution in high frequencies [6]). DCT
is preferred in images in JPG [11] to DFT transformation because the most of the
energy or emphsignal is concentrated in low frequencies (bulk).This non sparse
area is easy to isolate in the left top corner of the S space (origin). JPG used till
the latest standard4 DCT transformation as a first step also in color space: grey
images have only compression in the luminosity channel whilst colored images are
compressed also in HSV space5). Energetic coefficient in S are the cut out using
tables of compression depending on the desired quality using a ladder approach. In
order to be time efficient and to exploit parallelism, this steps are taken separately
for a size of the image 8× 8. This characteristic introduces artifacts: as the DCT
is applied block wise, creating a discontinuity between blocks, this discontinuity
is visible in the image and it is known as blockiness. (block boundary artifacts,
sometimes called macroblocking, quilting, or checkerboarding). The higher the
quality of the image the less this discontinuity will be visible.

4JPG 2000 uses Wavelets transform
5Hue Saturation Value: one of the most used cylindrical model to represent RGB (Red Green

Blue) space

11

Chapter 3

Compression of Big Streams of
Data in HEP

3.1 HEP experiments

An HEP1 detector is similar to a digital camera, in cameras the captured or
interesting particles are photons, in case of a detector we have a multiple layers
cameras mostly interested in capturing quarks or leptons, the product of protons
clashing2. As the theoretical background to understand quark studies is beyond
the scope of this work, we’ll simply highlight that the particles’ s clash creates sub
particles that spreads out in many different directions and trajectories. All originate
at the collision points IP3 hence creating a lot of experimental data to be analyzed.
From the study of these trajectories, merged with other information, the mass of
particles can be inferred so those can be identified. The probability of identify
interesting particles is bound to the energy of quarks in the collision which it’s not
possible to control with current technology. This fact requires experiments to be
repeated massively in order to be able to capture interesting yet rare phenomenons
estimated from theoretical studies. This very simple description however shows that
data produced by an event is massive, but the interesting information is hidden in
a small subset, therefore there’s a "needle in a haystack" problem to deal with.

1high energy physics
2This depends on the experiment, LHC have a proton/proton functioning
3interaction point (event): the predicted point of collision of quarks

12

3.1. HEP experiments

Figure 3.1: A trajectory highlighted by the detector

3.1.1 LHC data analysis and filtering

The most interesting processes generated at LHC4 are very rare and hidden in an
extremely high level of background noise. The LHC generates this processes by
accelerating charged bunches5 of particles into counter rotating circular beams, at
a rate of 40MHz 6. In order to observe the products of a collision during a bunch
crossing a general-purpose LHC experiment is made of many detecting elements
or detector. The data flow is massive (1.7 MB/25 ns, ∼ 80 TB/s) and only a
very small fraction of the events can be permanently stored as data for further
analysis.[1] A multi-level Trigger is designed to filter unrelevant events read by
detectors, this multilevel-trigger can be described as a stack: the first custom
hardware layer L17 reduce the event rate from 40 MHz to 100 KHz (1,7MB/10 µs,
∼ 170 GB/s), upper layers 2 and 3 both included in the HLT8 are instead cpu based
and refine raw spatial inputs (hits) into more significant and representative objects
like the tracks describing the trajectories of particles produced in a collision. The
HLT’s task of finding trajectories or track fitting can be described as a filtering
process Fig.3.1. This filter could greatly benefit from a smaller amount of data
provided as input. Compression comes into play at this point: cpu based nature
is indispensable for flexibility during analysis but it comes at the cost of a limited

4Large Hadron Collider
5bunch: technical term to indicate packets of protons traveling togheter in a portion of the

beam
6this rate depends on the capabilities of the LHC (luminosity), one bunch crossing every 25 ns

corresponds to the latest upgrade
7Level One
8High Level Trigger

13

3.2. M. Del Viva Neurological Model

acceptance bandwidth when confronted with L1 throughput. FTK proposed an
upgrade unit between L1 and HLT based on a compression method based on the
presented neurological model.

3.1.2 Similarities with the neurological model

An HEP experiment layered architecture share similarities with the neurological
phases in the vision process: the levels closer to the event have a very rapid and
simple activity, upper levels have a more complex and slower activity of filtering
similar to the post processing cpu activity in the HLT. The model describes the
gap between image acquisition and cognitive processing in vision as an hardware
bottleneck and provides a solution based on compression. A key point is that this
similarity is strengthened by the use of the metrics of information as it is known in
computer science and information theory: Shannon’s entropy provides the bridge
to implement an algorithm to model this neurological model.

3.2 M. Del Viva Neurological Model

The visual system needs to filter the most important elements of the external
world from a large flux of information in a short time for survival purposes. It is
widely believed that in performing this task, it operates a strong data reduction at
an early stage, by creating a compact summary of relevant information that can be
handled by further levels of processing [3]. This study shows that the difference
between the bandwidth of photoreceptors in early vision and the rate at which
neuron spikes in the cognitive process highlights the existence of a bottleneck, this
bottleneck can be understood in terms of information compression on fast streams
of data.

3.2.1 Model

Under this assumptions the model aims to mimic this neurological behavior by
maximizing the information entropy given the resource constrains of a limited
output bandwidth: W as the expected value of the frequency of the selected
patterns/salient featuresfeatures can be patterns but not vice versa, in the context
of these works these terms will be used as they were the same, among these only
a limited number can be stored: N as the storage capacity. The first constraint
is bound to the context of the application (hardware bottleneck and different IO

14

3.2. M. Del Viva Neurological Model

bandwidth), the second constraint provides the size of the set of salient features
that are to be preserved from the original input and therefore their cost in terms
of memory allocation. It is defined the set of all possible configuration of fixed
portions of the input (fixed size scrolling window) Q and pi as the probability of a
portion of the input to match an element in Q such that

∑
i∈Q pi = 1. The average

output information is measured in entropy
∑

i∈Q−pi log pi the model therefore
maximizes this measure to preserve information: a trivial solution is N = #Q,
this would only result in a change of format of the input leaving the size of the
input the same as the output. In order to compress the input, constraints must be
introduced in the formula. By imposing only constraint N highest entropy patterns
would be selected, but as entropy peaks at 1/2 when information is encoded in bits,
and because this is a large probability, that will result in a large output, the second
constraint W will ensure that output rate is bounded. This is represented by the
bandwidth cost of each pattern pi/W with W being the accepted bandwidth of
the output. The main cost of each pattern is therefore:

f(p) =
−p log p

max(1/N, p/W)
(3.1)

The optimal configurations for the provided constraints N , W is obtained by
imposing a threshold for the cost f(p) > c which is attained by∫

f(p)>c
δ(p)dp < N (3.2)

1

#Q

∫
f(p)>c

pδ(p)dp < W (3.3)

This kind of selection is very powerful as patterns variance can have high mag-
nitude and frequencies could mostly accumulate peripherally to the distribution??,
therefore simply choosing highest entropy could lead to low compression levels as

3.2.2 Algorithm

There’s therefore an unambiguous and general recipe to determine the optimal set
of patterns that a generic pattern filtering system should use in order to achieve
maximum information preservation under the given constraints. By tweaking
the parameters N and W we can choose the cusp maximum and consequently
the patterns Fig.3.2. There can be identified phases 3 phases: a learning phase

15

3.3. Implementations

log(p)

entropy
/

Unit Cost

log(W/N)

Figure 3.2: function 3.1 plotted with respect to a change of variable in Horizontal axis. Blue curve:
limited bandwidth and unlimited pattern storage capacity (W = 0.001, N = ∞); Red curve: limited
storage and unlimited bandwidth (N = 100,W = ∞); Red and Blue curve: limited bandwidth and
storage (N = 100,W = 0.001).

log(p) log(W/N)

c

entropy
/

Unit Cost

Figure 3.3: grey histrogram δ(p) is a unimodal fictional distribution chosen for illustration purposes, the
selection window is defined by f(c) by formla 3.2 and 3.3

in which all possible feature are sampled from uncompressed input streams, a
selecting phase in which the salient pattern or features are extracted by applying
Eq.3.2, 3.3 and a compression phase in which new unseen input streams are
filtered using the set of extracted features.

3.3 Implementations

Such algorithm can be implemented in many ways, but still it has to be able to cope
with the problem that has been exposed earlier: a filtering system with a limited
acceptance bandwidth must process data coming from an high throughput source
and the chosen implementation must operate accordingly to such constraints.

16

3.3. Implementations

3.3.1 Complexity

The fundamental operation in this compressing method is pattern matching. A
simple implementation as array access yields a time complexity of O(1), spatially
this implementation might need an exponential number of entries as the probability
space could be any combination of the input, therefore space complexity is O(2n)

and 2n = #(addrspace)9 with n being the number of bits for each pattern.

3.3.2 Algorithms for pattern matching

We cannot rely on this theoretical worst case scenarios, the pattern matching
problem has to be faced using different approaches:

• Binary search: An order is defined on the the set of meaningful patterns thus
a match can be acquired via binary search. With n = #(patternbank), this
method matches with a number of comparison O(log2n) both with binary
search and binary heap.

• Hash Tables: hash tables can be used to efficently store and condense sparse
keys into a fixed size array, this is a static case as patternbank is learned once:
the simplest case to analyze is hash tables with linked list to handle collisions or
hashing with caching [2]. In our case there is a #(patternbank) = n = O(m),
with m being the number of entries to store n elements, and by having
α = n

m = O(m)
m = 1 it yields an average complexity of O(1 + α) = O(1)

accesses for search. The pattern bank is known not being a uniform distributed
function among the addressingspace therefore n must be set to the nearest
bigger prime to have a uniform hashing. By using the simple hash function
h(k) = kmod(n) the number of collisions can be in the worst case #(addrspace)

n

as there are ∀k ∈ (addrspace),∃K = {k1, ..., km}|∀ki ∈ K,h(ki) = h(k),m =⌊
#(addrspace)

n

⌋
the probability of having only a collision for a particular slot

is 1
m so even without perfect hashing functions we can be confident of good

performance.

• Bloom filter: an algorithm that can be used to infer membership checking
of an element to a set: For a given set X,X ⊂ U a set of hash functions
K = {hi : U 7→ N, i ∈ {1, .., k}} are selected, each x ∈ X is hashed multiple

9will refer to the space of all possible patterns as addrspace to be consistent with the hardware
implementation in which each pattern is referenced by using an address in the memory

17

3.3. Implementations

times, a boolean table of sizem is used to store a 1 at positions h1(x), ..., hk(x).
This method is sensible to False Positives and the uncertainty can be measured
analytically: m >= n log2 e log2

1
ε , with n = #(patternbank), m = number

of bits used for the Bloom filter, ε = probability of False Positive, we assume
that the cost to compute the k hash functions is O(k) = O(1).

• Mixed: By taking X = (patternbank) and U = (addrspace), we can join a
bloom filter and an hash table, the case of x /∈ X is handled by the Bloom
filter, the complementary case will be handled by a lookup in the hash table,
the overall cost can be analyzed:

X =

cs p = #X
#U + ε

O(1) o.w.
(3.4)

cs is the cost of a lookup in the hash table.

E[X] = cs(
#X

#U
+ ε) +O(1)(1− (

#X

#U
+ ε)) (3.5)

3.3.3 CAM in general purpose architecture

The term associative memory or AM is widely used in Pyhsics, Computer Science
and electrical engineering. Generally speaking it indicates an architecture or
function that given a key returns a value: AM : K 7→ V, key ∈ K, value ∈ V 10.
This technology is used on the CPU chips to handle logical to physical address
translation (MMU) and to address cache memories. A theoretical model of a
computer architecture has:

• Address size wsize = number of bits per word

• Main memory addressing space Maddrspace = 2wsize

• Cache memory addressing space Ccaddrspace << Maddrspace

To use caches to implements efficient pattern matching Ccaddrspace needs to
cover the entire pattern bank, this could be achieved by assuming for simplicity
an architecture with words of wsize = patternsize. As mentioned before the set of
meaningful patterns could be a sparse subset of the probability space therefore might

10Also hardware look up table or LUT has a similar functioning

18

3.3. Implementations

not references contiguous addresses: cache memory uses set associative strategies
to remap physical address in main memory to a memory block in the cache3.4,
therefore there might be no possible way to control remapping of the address.
However this must be investigated case by case are there could be workarounds
on some architectures that provide a static use of caches. To match an address
generated from the processor, caches are implemented in hardware with CAM that
take one cycle to match the key at input port to the matching location. Caches are
organized in hierarchical levels growing in size and time of access: the lower the
number the closer to the processor unit. This logic takes a setup time of ∼ 3 cycles
of CPU clock at cache L1 (MMU translation from logic address is considered) up
to ∼ 100 cycles in L3.

Figure 3.4: K-way set associative cache memory can map sparse addresses in memory, In this example
its shown a 2way set associative cache.

K-way caches For Ccaddrspace to cover the entire pattern bank means that it
should be stored all in cache memory. The widest memory in the hierarchy are
L3 caches11. For example a 6 MB, 8 way set associative cache means ∼ 223

26
=

217lines of cache, if we assume a 64B memory block grouped in 23 ways memory
yields a ∼ 217

23
= 214sets. This implies 14 bits address for each set and 3 bits for

tag parallel matching. L3 cache is usually shared among cores, and introduces a
∼ 100 cycles latency12. With this kind of ideal dedicated caching a pattern could
match at a speed of ∼ 24 Mhz (2.4Ghz

100). Furthermore L3 caches adopts prefetching
policy, as it might not be possible to circumvent this logic there’s a considerable
overhead of unuseful overhead to be considered.

116 MB, 8 way associative cache of i7-3630QM Processor
12any kind of smart cache technology will not be discussed

19

3.3. Implementations

Complementary overhead The complementary case of a pattern not matching
cannot be handled without encountering complications. In case of cache miss an
access to main memory has to be performed, this may occur if pattern bank is
all stored in cache as there’s no dedicated logic to this case. This might cause
the loading and the replacing of a memory block into cache memory depending
on the replacing algorithm (LRU). This side effect degrades predicted matching
performances even more, and has to be investigated case by case: impact of cache
miss rate are unknown a priori as this depends on the probability of a pattern
occurring in an instance.

Custom hardware benefits vs general purpose General purpose could in
theory be suitable to deal with the presented problem, but a smaller addressing
space and the lack of dedicated logic, makes it hard to predict performances with
precision. Hence in order to have performance under control custom hardware
is essential, especially in online computation when this task is a part of a bigger
pipeline like themulti-level Trigger and loss of data is costly in terms of energy
consumption of LHC. A middle way solution would be to implement pattern
matching on a Many Integrated Core Architecture like the Xeon phi.

3.3.4 Custom Hardware

Implementing a powerful real-time selections is essential to filter background noise
and record only meaningful information. FTK is a high-performance embedded
system based on the combination of two widley used technologies: FPGAs working
with standard-cell ASICs, the Associative Memory (AM) chips[4]. At the core of
this system is the high parallelism provided by the AM chips, these chips share
the same pattern matching capabilities of CAM13 but the design is conceptually
different.

AM chip

FTK specifies a particular type of inputs and output: HITS are the raw spatial data
provided as low resolution track candidates, ROAD are the intermediate products
returned as output to the later stages in the tracking system.

AM chip matches the inputs with patterns stored in a patternbank in parallel.
Each row is composed of 8 words, each words is 16 bits long. A typical setup

13Content-Addressable Memories

20

3.3. Implementations

FF FF FFFF

word word word word

Layer 0 Layer 1 Layer 2 Layer 7

HIT

O
utput Bus

HIT HIT HIT

M
A
J
O
R
I
T
Y

P
R
I
O
T
I
T
Y

E
N
C
O
D
E
R

Layer
Match
FFs

Figure 3.5: The AM chip architecture.

is to store a pattern in one or more rows (Fig.3.5) The 8 words buses in input
carry the HIT coming from different levels of the detector14. Every HIT at the
input is matched on columns against an independent CAM bus (Xor + RAM).
The bitwise comparison’s result is then stored in a flip flop, a voting systems sync
the independent CAM buses. In (Fig.3.5) FF means that all 8 words matched
and 8 ones have been written on the bus that routes the flip flops to the majority
unit. If a pattern matches or "fires" the input HIT becomes a ROAD and the
address of the matched pattern as row index is provided as output. AM chip fast
pattern matching capabilities are achieved thanks to the parallel architecture. In
the latest version15 128 000 patterns are matched at a rate of 100 Mhz. The entire
FTK trigger has 128 boards with 64 AM chips each. FTK is very efficient as the
throughput of HITs is on average 50 MHZ.

• pattern = 128 bit

• pattern bank per chip = 128 ×103 pattern

• matching capabilities per chip: 128× 1011 pattern comparison
sec

• matching capabilities per board = 3.27681015 pattern comparison
sec

14complexity of a detector may introduce delays among the different layers. AM chip hardware
stores the result of the temporary match in the flip flop looking for correlation with other layers
HIT

15AM chip 06

21

3.3. Implementations

Hardware and Software implementations.

This model can be implemented in hardware using the AM chip. Once the patterns
are selected and loaded into the CAM buses the compression phase can be performed
with parallel pattern matching. On the software side the simulation of the algorithm
is an important step in the developing of a technology, therefore even if custom
solution have better performances also software implementation must be explored
in order to highlight technological differences and validate the hardware results.

22

Chapter 4

Image compression with Del Viva
Model

As described in [3] images are processed by extracting the optimal visual patterns
from natural Image statistics. The first attempt has been made with binary images.
Binary images are obtained by applying a suppressing threshold at the mean
luminance value of greyscale images. frequencies are sampled by superimposing
each pattern at all possible position on the sample image, the frequencies are then
clustered in bins from which the distribution δ in 3.2 3.3 is obtained.

Figure 4.1

In applying this model to vision, the simplest possible set Q of base patterns
have been considered, defined as all possible configurations of 3× 3 square pixel
matrices in black-and-white images (1-bit depth) yielding #Q = 512 possible
patterns. The set of meaningful patterns has been extracted form the probability

23

4.1. Experimenting on Medical Images

distribution of the patterns in a set of natural images. For this purpose a public
database of 560 calibrated natural pictures has been used. The choice of the
algorithm parameters (N,W) was based on the following considerations. Since the
algorithm revolves on the idea of a strong compression at the minimum possible
computational price, compression parameters have been set to W = 0.05 and
N = 16 as a “bare minimum” to be able to handle at least a few different spatial
orientations. A reasonable upper bound has been taken: N is a value of 10% of all
possible distinct patterns. Given that only 512 total distinct patterns are possible
in our basic 3× 3 model, N = 50 is the limit.4.1

Figure 4.2: A series of "natural" images compressed using the descripted method in which only 10% of
the overall patterns were preserved

4.1 Experimenting on Medical Images

The image processing capabilities of the model are investigated further as an
experimentation project during the period of development of this work, roughly one
month span. Our contribution was to generate an implementation of the presented
method and to experiment on MRI images.

4.1.1 Medical Imaging

MRI images are defined in terms of:

• Voxels: the basic unit of an MRI image is a pixel with 3D coordinates: it
differs from the graphical unit point or vector as it has 3 positive integer
indexes.

24

4.2. Data Analysis methods and key words

• Tissue Signal Characteristics: T1, T2 viscosty wieghtings [12] are stan-
daridized grey scales luminosity values representing a tissue consistency.
Weighting may depends on the MRI scanner used in the analysis.

• Affine: 4x4 matrix (12 degree of freedom) representing the affine transforma-
tion of the origin absolute point of view (register) in an Anatomical locations
system.

• Terms of Anatomical location system: RAS is the nomenclature of 3 origin
orthogonal axes: left to Right, posterior to Anterior and inferior to Superior,
respectively. RAS+ meaning that Right, Anterior, Posterior are all positive
values on these axes, also known as "real-world" coordinates or neurological
convention.

Figure 4.3: T1 weightings, 1 white matter, 2 grey matter, 3 cerebrospinal fluids

Voxels luminance values are representative of the density of the tissue located in
at a given position. In cerebral MRI there are 3 to 4 main areas of grey. Such areas
correspond roughly to 4 tissue consistencies in T1 viscosity scale: cerebrospinal
fluid(CSF), grey matter(GM), white matter (WM), bones and vessels, Fig.4.3. This
noticeable difference between grey levels induced researchers at INFN experimenting
on AMchip implementation of the image compression method designed by Del Viva,
Punzi et al. to evaluate the possible application for MRI imaging as with such a
low bit depth patterns can be used efficiently.

4.2 Data Analysis methods and key words

Patches The patternbank elements or patterns have the same dimensions as the
sampling unit, more simply called image patches.

25

4.3. Implementation and format

Figure 4.4: Grey level historgram computed for a patient: two pillars at the left periphery and a 3 modal
plateu (respectively CSF, GM, WM) in the mid low values can be identified, the small peak of wihte at
the right periphery is bones adn vessels value

Sampling The frequency of a pattern is sampled from an instance image: each
pattern is stored with the relative frequency sampled to create the frequency
histogram.

Quantization After frequencies are sampled and patternbank is selected a new
unseen images data is quantized to a series of pathces.

Merging By merging the average value of many frequency histogram instances
we calculate a probability histogram

Binning probability histogram uses the loge scale, these values are floored accord-
ing to a parameter bin factor, the sum of all patterns having the same bin value
yield a distribution δ.

4.3 Implementation and format

For this experiment a set of images Nifti-11 was used: this format is the new
standard in medical imaging (previously ANALYZE 7.5 was used but independent
updates made this format ambiguous), it is comprensive of a .nii storage that

1http://nifti.nimh.nih.gov/nifti-1

26

4.3. Implementation and format

contains: the header .hdr and the voxels .img: the header contains the relevant
information for MRI scan: affine, weighting(T1 or T2), and orientation (RAS or
others).

Software Used

• Python 2.7: scripting language

• Numpy: python package for multidimensional array handling

• OpenCV 2: python package for image processing

• Nibabel: python package for Nifti handling, provides Python interface as
multidimensional array.

• Pickle: python packag providing serialization of simple data structure.

Software Developed

• MDVcomp: a package for python capable of: sampling 2D and 3D images, a
merger used to perform analysis on data (binning), depends on:

– Numpy, OpenCV 2, Pickle

• niiImaging : a package for converting Nifti1 .nii data into PNG images,
depends on:

– Numpy, Nibabel, OpenCV 2

4.3.1 Compression and performances

A full 3D filtering will be the next step, for now an experiment has been run on
2D slices of MRIs to evaluate the results on smaller instances. From a probability
histogram the patterns with values in the bin adjacent the maximum were selected
by highest entropy Fig 4.6. The middle left to right image is seen from the left to
Right axis with coordinates at half of the maximum value on such axis (mid): in
Fig 5.1 first image on the left is provided as input, the second is the uncompressed
thresholded image and the third is the compressed image.

27

4.3. Implementation and format

Figure 4.5: From the original central image to the compressed version

Figure 4.6: δ(p) learned binning from the 8 patient set, patternbank was selected from one bin adjacent
the maximum (RED) logW/N = −7.5, vertical axis representation is scaled in log for figurative purposes

Compressiopn method

The image is sampled with a patch 3 × 3 pixels ×2 bits depth greyscale, the
(addrspace) in this case has size 218, with such a wide range we put heavy constraints,
the parameters used for compression are N = 180 as 5% of all the possible patterns
sampled, and W = 0.1. The patternbank is learned from 2D images taken from
the same mid left to Right position on a set of 8 patients Fig4.6.

Dictionary Encoding In the quantization phase, each pattern that matches is
stored in coordinate list at the patternbank index, with the relative 2d coordinate
(x, y) . For every new occurrence of the same pattern, only the couple (x, y) is
appended to the coordinates list, hence index pattern is stored only once.

28

4.3. Implementation and format

Offset Encoding An alternative encoding is done by saving for each position
in the image the index of the pattern that matched that portion of data. This
implementation however never showed significant performances.

SwitchedOffPixels Encoding This type of encoding considers the "edgy" na-
ture of the image, by saving only pixel on edges it can be saved a lot of space.
However in order to store the offset each pixel has to be stored with n + 1 bits,
with n being the grey scale bit depth. This needs to be done in order to tell offsets
from pixels.

Figure 4.7

Drawbacks The best compression is achieved with the SwitchedOffPixels encod-
ing. However there are drawbacks. Dictionary encoding is simpler for the hardware
to implement, whilst SwitchedOffPixels may need more complex hardware as the
image has to be reconstructed with the encoding. A dictonary encoding could also
be used for progressive dencoding as patterns are replaced sparsely over the image.

29

4.3. Implementation and format

file format

• header: patternbank : pattern0,..,patternN−1

• data options:

– Dictionary: (x0, y0, x1, y1, ., xj , yk), ... , (x′0, y′0, x′1, y′2, ., x′j , y
′
k)), index

of the list correspond to index of the pattern in the patternbank.

– Offset: patternindexi ,off_delim,ofs,off_delim,patternindexj , with
ofs being the number of empty pixels to a jump.

– SwitchedOffPixels: ... , offset,pixeli,j , ..., pixeli+l,j+k, offset, ... , with
offset being = overflow pixel, int

Figure 4.8: as shown in the images above compression ratio depends on the image itself, sparse images
are common in some MRI areas, but also very busy regions are present near center of the image

30

Chapter 5

Conclusions

5.1 Compression results

The comp ratio vary on the type of image: as an edge detector very sparse images
can be compressed very efficiently whilst others "busy" images might not be as
suitable candidates for this approach. Infact there are cases in which images are
actually inflated as it will be discussed later in the section about overlapping
patterns.

5.2 Possible image processing applications

This experimentation done on medical images highlighted that the method is
capable of edges detection. This simple approach is faster than other method,
like cv2.Canny1. Another possible application regarding MRI processing is the
possibility to exploit the edge detection capabilities on 3D features to make surface
mappings (MESH)5.2 easier, this could help to make a brain’s atlas.

Canny Complexity

• convolution pass: Sobel= N ×M2, whit N being the number of pixels per
image and M the size of the Sobel Kernel.

• Canny complexity = 2 convolution pass Sobel + 2 N (computation of the
gradient vector∇)

1openCV http://opencv.org/

31

5.3. Threats

Figure 5.1: On the left the edge detector cv2.Canny has been applied, in this case discreete derivative
approach is cutting off relevant data, different grey levels are meaningful and they’re conserved in the
right image.

5.3 Threats

With the potential benefits of this methods, there’s still a number of unanswered
questions and pitfalls in this research that must be investigated:

5.3.1 Image processing known weakness

A desirable property for a computer vision/image processing method is being
rotation invariant, many state of the art methods try to cope with this problem by
providing transformed inputs as a pre processing phase. Even thou there are studies
on local binary pattern or LBP that are rotation invariant[9] image processing
methods suffer from this weakness. This method is no exception but the MRI
scan format can mitigate this problem as the .nii format has absolute coordinate
system, so data can be aligned to a standard position. The problem is mitigated
but not completely solved as the origin of such spatial coordinates system is not in
the observed object, but in the observer point of view (the camera or in this case
the magnets of the MRI scanner), therefore there’s no perfectly aligned absolute
head position to be consistent with, but only an average standard positioning
that patients have to assume when analyzed and even few degrees may do a big
difference.

5.3.2 Overlapping patterns

In this step there’s no meaningful compression of data, rather information is
compressed as meaningful patterns. In order to simulate the way light interacts
with retina photoreceptors, patterns overlaps so that are invariant in the offset.

32

5.3. Threats

Figure 5.2: A 3d mesh of WM selection

The result may introduce redundant data as the patterns are not an unambiguous
encoding of the image, in order to have such code, there should be no sub portion
of any pattern overlapping with any other pattern, this could be a next step in the
learning process that has not been considered from the model. As shown before for
an instance image of size 181× 201 pixels was encoded using 130 patterns. Each
pattern is stored alongside with a

5.3.3 Scalability

In order to apply this method to MRI 3D voxel images pathces must have different
dimensions form the 2D approach, the size of addrspace scales esponentially with
the size of the patch

#(addrspace) = 2dim×bitdepth (5.1)

although this seems unreasonably huge the chance to sample all the possible
pattern decreases as the space increases. As an example if there were to be sampled
3d images 100×100×100 with a patch of dim:(3×3×3), 2 bits of depth, assuming
uniform distributed pattern (which is a true only for noise "salt and pepper images")

33

5.4. Next

the probability of a d.r.v2 X selecting all different patterns:

p(X = sampling all different patterns) = (
1

2dim×bitdepth
)100×100×100 (5.2)

Is the uniformity was not the case, p(X) would be even less as there would be
pattern that are more frequent than others.

5.3.4 Overfitting

There has to be considered the training set and the test set are the same. Images
were eventually self learned and therefore there might be a form of overfitting.
At the mean time no loss function has been defined to qualitatively evaluate the
compression quality. A evaluation of this method could be to train two classification
algorithm to try to recognize the same labeled data from a compressed and an
uncompressed set.

5.4 Next

In a possible next phase there could be the possibility to apply the presented
method to a labeled data set and evaluate 2 different Machine Learning Classifier.
For example Conv NN 3 could be trained on two different sets, one compressed and
one uncompressed but with the same labeling, and evaluate how the classification
performs . This might also give a better evaluation metric for the method itself.

2discrete random variable
3Convolutional Neural Networks are the standard machine learning approach to image classifi-

cation and object recognizer

34

.1. Appendix

.1 Appendix

.1.1 Function Study

The function 3.1 can be studied in two separate intervals.

f(p) =
−p log p

max(1/N, p/W)
(3)

f(p) = −p log pN, p < W/N (4)

f(p) = − log pW, p > W/N (5)

with the change in variable x = log(p) there can be found the equivalent
formulas.

f(x) = −xW, x > logW/N (6)

f(x) = −exxN, p < logW/N (7)

the intersection point is shown in Fig 3.2 as the cusp at blue and red curve
intersection.

.2 Ringraziamenti

Ringrazio il mio relatore: prof. Vincenzo Gervasi per avermi supportato in questo
percorso eterodosso, la prof.sa Paola Giannetti per avermi accolto nel Team di
sviluppo e per avere avuto la pazienza di introdurmi a concetti di HEP, ringrazio
Hikmat Nasimi per avermi portato a conoscenza di questo progetto interessante
e per aver condiviso serate alternative a spulciare la documentazione. Ringrazio
tutto il Team di FTK per la calorosa accoglienza, i consueti genitori, i familiari e
anche chi è superfluo ringraziare dato che avrà sempre la mia gratitudine.

35

Bibliography

[1] S. Citraro, N. Biesuz, P. Giannetti, P. Luciano, H. Nasimi, M. Piendibene,
C.-L. Sotiropoulou, Member, IEEE and G. Volpi (confirmend 2016) Highly
Parallelized Pattern Matching Hardware for Fast Tracking at Hadron Colliders,
IEEE Transactions on Nuclear Science

[2] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, Charles E. Leiserson
(2001) Introduction to Algorithms

[3] Del Viva , Punzi , Benedetti (2013) Information and Perception of Meaningful
Patterns. PLoS ONE 8(7): e69154. doi:10.1371/journal.pone.0069154

[4] M. Dell’Orso and L. Ristori (1989) VLSI Structures Track Finding, Nucl. Instr.
and Meth. A, vol. 278, pp. 436-440.

[5] Huffman (1952) A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE 40 (9): 1098–1101.
doi:10.1109/JRPROC.1952.273898.

[6] RANDALL C. REININGEK AND JERRY D.GIBSON, MEMBER IEEE (1983)
Distributions of the Two Dimensional DCT Coefficients, E TRANSAOCN-
TIONS COMMUNICATIONS, VOL. COM-31, NO. 6, JUNE

[7] Claude Shannon (1948) A Mathematical Theory of Communication,
10.1002/j.1538-7305.1948.tb01338.x

[8] Welch, Terry (1984) A Technique for High-Performance Data Compression.
Computer 17 (6): 8–19. doi:10.1109/MC.1984.1659158.

[9] G. Zhao, T. Ahonen, J. Matas and M. Pietikainen, (2012) Rotation-Invariant
Image and Video Description With Local Binary Pattern Features, in IEEE
Transactions on Image Processing, vol. 21, no. 4, pp. 1465-1477

36

Bibliography

[10] (2013)Fast Tracker for Hadron Collider Experiment FP7-PEOPLE-2012-IAPP
An FP7 IAPP project (February 1, 2103 - January 31, 2017) Grant Agreement
Number 324318

[11] JPEG ISO/IEC 10918-1 ITU-T Recommendation T.8

[12] http://www.med.harvard.edu/aanlib/basicsMR.html

37

	Introduction
	Neurological model and computer science
	The experiment
	LossLess and Lossy compression

	Compression Methods
	Entropy
	Definition

	Loss less compression
	Huffman coding
	LZW compression

	Lossy compression
	DCT discrete cosine transform

	Compression of Big Streams of Data in HEP
	HEP experiments
	LHC data analysis and filtering
	Similarities with the neurological model

	M. Del Viva Neurological Model
	Model
	Algorithm

	Implementations
	Complexity
	Algorithms for pattern matching
	CAM in general purpose architecture
	Custom Hardware

	Image compression with Del Viva Model
	Experimenting on Medical Images
	Medical Imaging

	Data Analysis methods and key words
	Implementation and format
	Compression and performances

	Conclusions
	Compression results
	Possible image processing applications
	Threats
	Image processing known weakness
	Overlapping patterns
	Scalability
	Overfitting

	Next
	Appendix
	Function Study

	Ringraziamenti

	Bibliography

