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ABSTRACT 

MULTIPROCESSING SYSTEMS DEVELOPMENT FOR 
IMPLEMENTATION OF APPLICATIONS 

 

This dissertation presents the author’s research in the field of 

multiprocessing systems for implementation of applications. The main objective is 

the identification of the optimum heterogeneous multiprocessing design 

architecture for a given application. This objective is tackled though two different 

approaches: a) formulation of a theoretical model that can be used to optimize each 

system according to the application’s specification and platform’s characteristics 

and b) direct approach through finding the optimum architecture for two 

characteristic and high performance applications with hard real-time requirements. 

The developed theoretical model formulation is based on Integer Linear 

Programming and can be used to identify the optimum architecture and task 

assignment for a given application and a specific platform. The optimization can be 

executed with a variety of objective functions that express the main characteristics 

of a system, such as performance and usage of hardware resources, and additional 

characteristics, such as usage of memory resources, power and temperature. 

Objective functions can even be combined with varying importance weights if 

necessary. Emphasis was laid on the efficient usage of hardware resources by 

studying the correlation of performance increase and increase in resource usage. 

The introduction of memory resources, power and temperature did not add 

significant complication to the initial model. The final model can be used for 

heterogeneous MPSoC optimization early in the design development stage. 

The first application used to implement a working example of an optimized 

MPSoC system is a real-time machine vision system for real-time flow detection on 

microfluidic Lab-on-Chips. The system is designed to follow a 60 fps camera with 1 

Mpixel resolution. To achieve this performance a highly parallel implementation was 

designed. The system is robust against changing lighting conditions and small 

displacements. High performance modules for center of mass and median 

calculations were designed, and additionally an application specific alarm point 



 
 

detection module. These modules are generic and easily adjustable to various image 

processing applications. Additionally, bit accurate simulation was used to specify the 

precision required for the edge detection preprocessing step. The system achieves 

the required performance by a significant margin and comparison with previous 

machine vision implementations on various platforms demonstrates that the system 

has the best performance for the same or bigger video frame resolutions. 

The second application used as a working example is a high performance 2D 

pixel clustering implementation for streaming data. The implementation was 

originally designed to be used in the ATLAS Fast TracKer processor, an upgrade for 

the Trigger and Data Acquisition system of the ATLAS detector. The system uses a 

moving window technique that exploits the 2D fabric of the FPGA to reduce looping 

of data for cluster identification. In addition, it is fully generic and modular, and can 

be implemented with multiple clustering engines working in parallel. A critical 

factor is the avoidance of all possible bottlenecks in data throughput. Therefore 

special provision was taken and exploration was executed to prevent backpressure 

to previous elements in the processing chain with the use of appropriate buffering 

techniques. The system achieves the required performance of processing data with 

40 MHz input rate by using 4 parallel engines. Comparisons demonstrate that 

previous implementations would require 64 times more resources to achieve 

equivalent performance. 

Concluding, this thesis presents a twofold approach to multiprocessing 

system design. First, a theoretical model that can be used to optimize system 

architecture and application task assignment at an early design stage was developed 

and, second, hands on optimized MPSoC implementations for two computationally 

intensive applications were presented. The systems presented are optimized for 

parallelism, memory access, buffering, so that performance requirements are met 

but also no bottlenecks can hinder data throughput. 

  



 
 

ΠΕΡΙΛΗΨΗ 

ΑΝΑΠΤΥΞΗ ΠΟΛΥΕΠΕΞΕΡΓΑΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΙΑ 
ΥΛΟΠΟΙΗΣΗ ΕΦΑΡΜΟΓΩΝ 

 

Το αντικείμενο αυτής της διδακτορικής διατριβής είναι η ανάπτυξη 

πολυεπεξεργαστικών συστημάτων για υλοποίηση εφαρμογών. Ο βασικός στόχος 

της διατριβής είναι ο εντοπισμός του βέλτιστου ετερογενούς πολυεπεξεργαστικού 

συστήματος για την υλοποίηση κάθε συγκεκριμένης εφαρμογής. Ο στόχος αυτός 

επιτυγχάνεται μέσω δύο διαφορετικών προσεγγίσεων: α) διατύπωση ενός 

θεωρητικού μοντέλου που μπορεί να χρησιμοποιηθεί για τη βελτιστοποίηση κάθε 

συστήματος σύμφωνα με τις απαιτήσεις κάθε εφαρμογής και β) ευθεία 

αντιμετώπιση του προβλήματος με ανεύρεση της βέλτιστης αρχιτεκτονικής για δύο 

χαρακτηριστικές εφαρμογές υψηλών απαιτήσεων με ανελαστικές προδιαγραφές 

απόκρισης σε πραγματικό χρόνο. 

Το θεωρητικό μοντέλο που αναπτύχθηκε στηρίζεται στο Γραμμικό 

Προγραμματισμό Ακεραίων και μπορεί να χρησιμοποιηθεί για να εντοπίσει τη 

βέλτιστη αρχιτεκτονική αλλά και τη βέλτιστη ανάθεση εργασιών σε κάθε 

επεξεργαστική μονάδα για κάθε εφαρμογή και συγκεκριμένη πλατφόρμα 

υλοποίησης. Η βελτιστοποίηση μπορεί να εκτελεστεί με μια ποικιλία από 

συναρτήσεις στόχου (objective functions) που εκφράζουν τα βασικά 

χαρακτηριστικά του συστήματος όπως επίδοση και χρήση πόρων, αλλά και 

επιπρόσθετα χαρακτηριστικά όπως η χρήση πόρων μνήμης, ισχύς και θερμοκρασία. 

Συναρτήσεις στόχου μπορούν να συνδυαστούν σε μία ενιαία συνάρτηση με 

διαφορετικό βαθμό σημασίας για την καθεμία. Δόθηκε έμφαση στην αποδοτική 

χρήση των πόρων του συστήματος μελετώντας τη συσχέτιση ανάμεσα στη 

βελτίωση των επιδόσεων και την αύξηση στη χρήση πόρων. Η εισαγωγή 

παραμέτρων όπως η χρήση πόρων μνήμης, ισχύος και θερμοκρασίας έγινε χωρίς 

σημαντική αύξηση στην πολυπλοκότητα του αρχικού μοντέλου. Το τελικό μοντέλο 

μπορεί να χρησιμοποιηθεί για τη βελτιστοποίηση ετερογενών πολυεπεξεργαστικών 

συστημάτων ακόμα και σε αρχικό στάδιο της διαδικασίας ανάπτυξης του 

συστήματος. 



 
 

Η πρώτη εφαρμογή που χρησιμοποιήθηκε για την υλοποίηση ενός 

λειτουργικού πολυεπεξεργστικού συστήματος είναι ένα σύστημα μηχανικής όρασης 

με απαιτήσεις απόκρισης σε πραγματικό χρόνο για την ανίχνευση ροών σε 

μικρορροϊκά Lab-on-Chip. Το σύστημα έχει σχεδιαστεί για να ακολουθεί κάμερα με 

ταχύτητα 60 καρέ το δευτερόλεπτο και ανάλυση 1 Mpixel. Για να επιτευχθεί αυτή η 

επίδοση σχεδιάστηκε ένα σύστημα με υψηλή παραλληλία. Το σύστημα μένει 

ανεπηρέαστο από τις αλλαγές φωτεινότητας και τις πιθανές μικρομετακινήσεις. 

Υποσυστήματα υψηλών επιδόσεων σχεδιάστηκαν για τον υπολογισμό του κέντρου 

βάρους, αλλά και του διαμέσου, καθώς και ένα σύστημα που ανιχνεύει σημεία 

ενδιαφέροντος πάνω στις ροές. Τα υποσυστήματα αυτά είναι πλήρως 

διαμορφώσιμα και μπορούν να προσαρμοστούν σε ποικίλες εφαρμογές 

επεξεργασίας εικόνας. Επιπροσθέτως, προσομοίωση με ακρίβεια bit 

χρησιμοποιήθηκε για τον καθορισμό της απαιτούμενης ακρίβειας στο στάδιο 

προεπεξεργασίας ανίχνευσης ακμών. Το σύστημα επιτυγχάνει με άνεση τις 

απαιτούμενες επιδόσεις. Σύγκριση με προηγούμενες υλοποιήσεις αντίστοιχων 

συστημάτων μηχανικής όρασης σε διάφορες πλατφόρμες αποδεικνύουν ότι το 

σύστημά μας έχει την καλύτερη επίδοση για ίδια ή και μεγαλύτερη ανάλυση 

κάμερας. 

Η δεύτερη εφαρμογή που χρησιμοποιήθηκε ως λειτουργικό παράδειγμα είναι 

μια υλοποίηση ενός δισδιάστατου αλγορίθμου συσταδοποίησης εικονοστοιχείων 

(2D pixel clustering) υψηλών απαιτήσεων. Η υλοποίηση αυτή αρχικά σχεδιάστηκε 

για τον επεξεργαστή Fast TracKer του ATLAS, μία αναβάθμιση του συστήματος 

δειγματοληψίας του ανιχνευτή ATLAS. Το σύστημα χρησιμοποιεί μία τεχνική 

μετακινούμενου παραθύρου ανίχνευσης που εκμεταλλεύεται τη δισδιάστατη δομή 

του FPGA για την αποφυγή των πολλών κυκλικών μετακινήσεων των δεδομένων. 

Επιπλέον, είναι πλήρως παραμετροποιημένη και μπορεί να υλοποιηθεί με πολλές 

μηχανές συσταδοποίησης να εργάζονται παράλληλα. Ένα κρίσιμο στοιχείο στην 

υλοποίηση είναι η αποφυγή οποιασδήποτε ανάσχεσης στην ανεμπόδιστη διέλευση 

δεδομένων, γι’ αυτό και δόθηκε ιδιαίτερη έμφαση στην απρόσκοπτη επεξεργασία 

δεδομένων και στη χρήση των απαιτούμενων αποθηκευτικών στοιχείων. Το 

σύστημα επιτυγχάνει τις απαιτούμενες επιδόσεις των 40 MHz ρυθμού επεξεργασίας 

δεδομένων εισόδου με χρήση 4 παραλλήλων μηχανών συσταδοποίησης. Συγκρίσεις 



 
 

με προηγούμενες υλοποιήσεις αποδεικνύουν ότι θα απαιτούνταν χρήση πόρων 64 

φορές περισσότερων για την επίτευξη αντίστοιχων επιδόσεων. 

Συμπερασματικά, η διατριβή αυτή παρουσιάζει μια διπλή προσέγγιση στην 

ανάπτυξη πολυεπεξεργαστικών συστημάτων. Πρώτα ένα θεωρητικό μοντέλο το 

οποίο μπορεί να χρησιμοποιηθεί για τη βελτιστοποίηση των αρχιτεκτονικών των 

συστημάτων και την ανάθεση εργασιών στις επεξεργαστικές μονάδες ακόμα και 

νωρίς στη διαδικασία ανάπτυξης του συστήματος. Στη συνέχεια, δύο 

βελτιστοποιημένες υλοποιήσεις πολυεπεξεργαστικών συστημάτων για εφαρμογές 

υψηλών απαιτήσεων. Τα συστήματα που παρουσιάζονται είναι βελτιστοποιημένα 

ως προς την παραλληλία, τις προσβάσεις στη μνήμη και τις μνήμες προσωρινής 

αποθήκευσης, έτσι ώστε τα συστήματα να επιτυγχάνουν τις απαιτούμενες 

προδιαγραφές και να υπάρχει διαρκής απρόσκοπτη διέλευση των δεδομένων. 
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Chapter 1 

Introduction 

1.1. Embedded Systems 

Modern embedded systems are no longer used for simple “computing” tasks. 

They are the most pervasive technology in our lives, used in almost all devices that 

involve a certain level of technology: telephones, cars, televisions, cameras, all kinds 

of home appliances, security systems, and in devices that require high performance 

for data processing such as surveillance cameras, medical imaging, tracking for high 

energy physics, astronomical imaging, DNA sequencing etc. Many of the tasks at 

hand for these new generation embedded systems require high performance 

processing and high data throughput with increased algorithmic complexity. To 

implement such powerful systems complicated hardware design is required. 

However, the constant scaling of process technology leads to an ever increasing cost 

of designing and developing Very Large Scale Integrated Circuits (VLSI circuits). 

To cope with the increasing demands of the current application domains 

embedded systems need to have high processing power which in turn leads to high 

power consumption. In Figure 1.1 the key challenges in mobile device industry are 

presented [1]. The step function demonstrates the gain in cellular transmission over 

the change of protocols over time. This gain follows Shannon’s law [3] for 

algorithmic complication. It can be seen that the transmission performance is 



 2 

doubled in 8.5 months. Moore’s Law [2] demonstrates that 18 months are required 

to double the number of transistors and therefore double processor performance. 

Additionally, 10 years are required for batteries to double their energy density and 

12 years are required to double memory access time. It is obvious that the gaps in 

the evolution time between the different technologies create obstacles to the 

development and commercialization of systems and products in the 

communications field. Mobile devices industry is a very popular application field 

with constant development and evolution and very indicative of the bottlenecks that 

appear in the development of high performance embedded systems. It is obvious 

that an alternative approach to embedded system design is essential to cope with 

the bottlenecks in technology evolution. 

 
Figure 1.1. Processing Requirements Combined with Moore’s Law, Battery 

Capacity and Memory Access Time 

The answer to the increasing cost of developing high performance embedded 

systems on ASIC technology is the use of flexible multiprocessing systems. An 

additional advantage is the implementation of such architectures on reconfigurable 

devices such as FPGAs. With increasing levels of integration, it is now feasible to 

integrate heterogeneous systems entirely on a single chip. The design of such 

systems is complex, and the complexity is increasing with the technology evolution. 

In parallel, mapping applications on such systems follows a parallel complexity 

curve [4]. 
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1.2. Multiprocessing Systems 

Multiprocessing systems are not a new concept. The first multiprocessing 

systems were systems that used multiple processors that were in fact several 

separate CPUs [5]. What has advanced significantly over the past decade is the 

number of processing elements that can be integrated on a single device (ASIC, 

FPGA, GPU etc.) that are now defined as a multiprocessing system. 

Multiprocessing systems can be homogeneous or heterogeneous. 

Homogeneous systems use identical processors with the exact same characteristics: 

architecture, clock speed, memory structure and size etc. Heterogeneous systems 

have processing elements that differ; they can be general processors, DSPs, 

hardware accelerators, or even general processors with different characteristics 

depending on the application’s needs. Identical MPSoCs are common in computing 

systems that are designed for general use or use for a broad field of applications: e.g. 

processors for desktop computers [6], for mobile devices [7], even space grade 

processors [8]. Heterogeneous MPSoCs target application specific fields exactly 

because they are optimized for specific applications. Heterogeneous MPSoCs require 

more development time but are better suited performance wise and consumption 

wize to the application they are designed for. Heterogeneous MPSoCs are the new 

holy grail of embedded systems. 

1.3. The Five Laws of Embedded Systems 

There are two fundamental laws that govern the evolution of integrated 

circuits and electronics in general: Moore’s law and Amdahl’s law. Three additional 

laws that govern software development have also been suggested by N. Myhrvold. 

As a whole, these five laws describe the evolution of computing systems in general. 

1.3.1. Moore’s Law 

Moore’s law derives from the observation that throughout the history of 

computing hardware the number of transistors in dense integrated circuits doubles 

every two years (Figure 1.2). The exponential law is often adjusted to chip 

performance that, as attributed to Intel executive David House, is said to double over 
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eighteen months since the transistors do not only increase in number, but are faster 

as well. 

 

Figure 1.2. Moore’s Law 

Moore’s law has been the driving force of electronics evolution ever since it 

was first introduced. However, it is bound to reach its limit due to technological 

limitations. The size of transistors cannot be reduced indefinitely. Already 

technology is facing the quantum limitations of transistor miniaturization. The 

solution is the multi-gate design approach (such as FinFET technology [9]). It is 

obvious that the trend in integrated circuit evolution is towards multiprocessing 

systems (Figure 1.2). The reason behind this trend is that increasing operational 

clock speeds is no longer a viable solution to increase system performance. Faster 

clock speed means more power consumption and more heat dissipation. These are 

even bigger bottlenecks than technology itself. Placing more cores per chip is the 

answer to performance. But being able to extract the performance from a multicore 
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system is a challenge on its own right. Part of this challenge is best described by 

Amdahl’s law next. 

1.3.2. Amdahl’s Law of Diminishing Returns 

Amdahl’s Law is the statement that the speedup in parallel processing of an 

algorithm is always limited by the fraction of the problem that must be executed 

sequentially. The mathematical formulation of the law is presented in Equation 1.1. 

TSerial is the total sequential execution time, TParallel is the total parallel execution 

time and N is the number of parallel processors. SpeedUp factor is always smaller 

than the number of parallel processors, since TSerial can never be zero. 

TSerial TParallelSpeedUp TParallelTSerial
N

+
=

+
 

Equation 1.1. Amdahl’s Law 

In Figure 1.3 the correlation between the fraction of sequential execution 

time and speedup is very vividly demonstrated. When 50 % of the execution time is 

sequential, speedup cannot be increased further than 2 irrespective of the number of 

parallel processors used. There is always an upper bound of speedup that can be 

achieved in an algorithm and it is dependent only the sequential time fraction. 

It should be noted however that there are no naturally occurring parallelisms 

in algorithms. Parallelism can only occur when all internal dependencies are 

removed and it is a complicated task to fulfill. Additionally, properly assigning these 

tasks to processing elements to achieve parallelization is not a straightforward 

process as there is much more to processing time to take into account, such as 

memory sharing, power, message passing delays and more. 

In [10] Cassidy and Andreou raise a number of interesting questions about 

the number of processors that are efficient and effective per application, the 

organization of local memories and the architectural organization of the 

multiprocessing systems that optimize performance. They combine two targets, 

speed and energy, in one objective function to find the optimal multiprocessing 
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organization. Defining an objective function is one of the keys to optimizing the 

performance of a parallel implementation. 

 

Figure 1.3. Parallel Execution SpeedUp Based on Amdahl’s Law 

1.3.3. Myhrvold’s three fundamental laws of software 

Nathan Myhrvold was the CTO of Microsoft when in 1997 ACM conference 

made a well-known presentation about the next 50 years of software where he 

introduced the “three laws of software” [11]. The three laws of software where 

articulated in very simple words but grasped the evolution of software development 

for the years to come: 

First Law - Software is a gas: Software expands to fit the “container” it is in. 

The “container” in the software notion is the available hardware. Therefore, no 

matter how powerful the available hardware is, software will always become 

complex and demanding enough to require all available resources. 

Second Law – Software grows until it becomes limited by Moore’s law: 

The second law is complementary to the first law. Initial software growth is rapid, 

but then it is limited by the available hardware. 
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Third Law – Software growth makes Moore’s law possible: Software 

growth is the reason that urges people to buy new hardware. It is the economic 

motivator of hardware development and the reason why hardware becomes more 

powerful for the same price and not cheaper. 

These three laws describe the motivation behind hardware performance 

improvement. As the current trend is that more money is spend on application 

development than actual hardware development, it is clear that the most cost 

efficient strategy for hardware improvement will win the market. 

The limits of Dennard Scaling [12] are slowly reached (transistor 

miniaturization is reaching its technology limits) and the “silver bullet” to increase 

performance comes from parallelism in the design. Parallelism can be implemented 

in all system levels: from coarse grain implementations in general processing 

elements, to fine grain implementations in task specific hardware accelerators. 

Exploring all available options to optimize for performance in different 

implementation platforms is the key to a successful design. 

1.4. ASICs vs. FPGAs 

ASICs are devices custom build for a particular design. The ASIC technology 

has advanced substantially during the last decades and now popular CPUs, such as 

the Intel Core-i7 use 22nm 3D technology transistor design [13].  

Field Programmable Gate Arrays (FPGAs) are programmable semiconductor 

devices that are based around a matrix of Configurable Logic Blocks (CLBs) 

connected through programmable interconnects (Figure 1.4).  

ASIC designs are by definition lower power than equivalent FPGA designs. 

They can achieve better performances and if a large number of units are needed, 

they have smaller cost per unit. FPGAs are more flexible, design can be changed late 

in the development process, they are reusable, and they have smaller time to 

market, cheaper tools and low cost per unit if small number of units is required. 

Each technology has advantages and disadvantages that are defined by the 

application and its specifications. 
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Figure 1.4. FPGA Block Structure (©Xilinx Inc.) 

FPGA technology, however, is advancing rapidly. Xilinx and Altera are already 

producing high intensity and ultra high performance FPGA devices, closing even 

more the gap to ASIC technology. Xilinx’s Ultrascale devices use TSMC 16 nm FinFET 

technology, doubling the capacity of the current largest Virtex-7 device. Altera is 

producing Stratix 10 series using Intel’s 14 nm Tri-gate process [15]. Both vendors 

offer a complete heterogeneous solution: Xilinx offers an Utlrascale MPSoC Zynq 

solution [14] and Altera couples with ARM-Cortex quad core processors. The future 

holds even bigger challenges as FPGA vendors plan to combine FPGAs and ASICs on 

a single die, producing the so called “multi-package technology” ([16]-[18]). The 

demands of massive data centers, the so called “big-data” problem are now the 

market and technology drives: fast networking requirements and ultra fast 

processing of substantial amounts of data call for hardware accelerations that ASIC 

technology alone can no longer provide. Heterogeneous MPSoCs are the solution big 

IT companies look for and hardware design needs to be adaptable, generic and 

portable to cope with such demands. 

1.5. Thesis Contribution 

This thesis comes to explore the process used for homogeneous and 

heterogeneous MPSoC optimization. The objective is the final implementation of a 

highly optimized MPSoC architecture for a given application field. 
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Applications in signal, image, and video processing require large computing 

power and have real-time performance requirements. The hard specifications for 

such applications call for embedded implementations as opposed to general-

purpose computing elements. ASIC design has evolved significantly over the past 

decades but the best solution to find more computational power is to switch to 

multiprocessing system on chip design. 

One of the challenging issues in design of embedded multiprocessors is 

managing communication and synchronization overhead between the 

heterogeneous processing elements. Optimized task assignment on the various 

processing elements is critical and requires significant effort. More and more high 

performance reconfigurable devices are available in the market and gain popularity 

in the industry day by day. The FPGA market is booming with new generation 

devices and ultrascale technology. Adding this reconfigurability characteristic of the 

devices in the parameters that need to be defined for the development of an MPSoC 

system, it is understood that the optimization problem becomes a very complicated 

one. 

Tools and models have been developed for various characteristics of the 

application specific MPSoCs. Even though design space exploration of parallel 

systems and the related automated tools have existed for some time now, the 

complexity of the parameters is increasing continuously. New parameters are added 

in the required system exploration such as memory requirements and energy 

consumption. The importance of such approach is evident by the inclusion of design 

exploration tools in the HiPEAC Roadmap 2015 [19] that targets the vision of 

embedded systems research until 2020. 

In this thesis the MPSoC optimization problem is tackled from two different 

points of view: a) formulation of a theoretical model that can be used to optimize 

each system according to the application’s specification and platform’s 

characteristics and b) direct approach through finding the optimum architecture for 

two characteristic and high performance applications with hard real-time 

requirements. 
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The first step in this research is the extensive design space exploration of 

MPSoC on reconfigurable devices (FPGAs). MicroBlaze soft processors are used as 

processing elements because they offer a large number of reconfigurable 

parameters (local/external memory, caches, various bus interfaces etc.). Data and 

task level parallelism is extensively explored as well as the correlation between 

increase of performance and hardware resource usage for different architectural 

approaches. As the main focus is signal and image processing, JPEG was chosen as a 

typical algorithm for this application field. A new parameter called Hardware 

Efficiency is introduced to associate area increase with performance. This new 

parameter quantifies how “efficiently” hardware resources are used in every 

implementation. 

The hands on experience gained lead to the development of an Integer Linear 

Programming (ILP) model for automated design space exploration of hybrid MPSoC 

systems. Hybrid and heterogeneous MPSoC systems use different types of 

processing elements: general-purpose processors, hardware accelerators, DSPs etc. 

The ILP model incorporates the parameters of internal and external memory 

resources, as well as the option of resource sharing. Objective functions for area, 

performance and memory usage can be used to optimize the system according to the 

application and the device needs. The model is extended to include power and 

temperature estimations. The formulation is appropriately adapted for temperature 

estimation for each processing unit of a hybrid FPGA MPSoC as well as estimation 

for the mean device temperature at regular time intervals. The inclusion of the new 

variables does not impose significant overhead to the previous formulation. The new 

model provides the designers with a tool for optimization based on a variety of 

parameters early in the system development time. 

A direct approach in MPSoC optimization was used for two characteristic 

high performance applications as working examples: 

The first one is a Machine Vision implementation for real-time flow detection 

on microfluidic Lab-On-Chips (LoCs). The implementation will be integrated in a 

movable Point-of-Care system, therefore special provisions had to be made so that 

the system is robust against changing lighting conditions and small LoC 
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displacements. The system uses a chip frame detection step to identify the device’s 

bounding box and calculate all flows by reference to the bounding box’s upper left 

corner. The architecture uses extensive parallelism to achieve the required 

performance to follow a 60 fps 1 Mpixel camera. As machine vision implementations 

are very commonly used in industrial and other applications, this implementation is 

a very good example of a high performance system for this particular application 

field of multimedia and image processing. 

For the development of the system, the degree of parallelism required was 

explored in correlation with the application requirements. In addition, a bit accurate 

simulation of the edge detection module was developed to be used for exploration 

on the designs characteristics to approach the given specifications as well as system 

verification. High performance generic modules were designed for center of mass 

and median calculation, and an alarm point detection module. All these modules 

have the parallelism required by the system and are flexible enough to be adapted 

for different image processing implementations. The performance of the system is 

compared with previously implemented similar algorithms in various platforms to 

prove the performance gains of the implementation. The machine vision system is 

significantly faster for the same or bigger video frame resolutions. 

A working prototype of the machine vision system was produced as a proof 

of concept. 

The second application is a real-time 2D pixel clustering implementation. 

This application is a very characteristic image processing algorithm used for early 

stage date reduction and localization purposes. The 2D pixel clustering 

implementation was originally developed for the Fast TracKer processor of the 

ATLAS detector at CERN, but the design is generic enough to be adaptable to various 

image processing applications. The ATLAS detector presents the challenge of hard 

real time requirements for data processing (40 MHz data input rate) and in addition 

the design must be flexible to be used not only by the previously installed Pixel 

Detector Layers but the newly installed Insertable B-Layer that has a maximum 

input data rate of 100 MHz. Previsions are taken so that the system can be used in 

future upgrades of the ATLAS detector after the next LHC shutdown (further 
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increase in data input rates). The proposed application is very good example for 

high-throughput data streaming applications. 

Taking all these requirements into consideration a 2D pixel clustering system 

for FPGAs was designed. The implemented innovative algorithm takes full advantage 

of the 2D FPGA fabric to avoid looping of data as much as possible for clustering 

identification using a moving window approach. The system is highly modular and 

the degree of parallelism can change by means of a single constant change in the 

design libraries. In High Energy Physics applications, unlike most common 

multimedia applications, data cannot be dropped in case a data throughput 

bottleneck appears in the system. Therefore, extensive design space exploration of 

the architecture was executed to not only achieve the required performance but to 

avoid all possibilities of backpressure applied by the pixel clustering module to 

previous computing elements in the ATLAS Trigger and Data Acquisition chain. The 

resulting implementation is innovative and fully parametric and achieves much 

better performance than equivalent approaches in the relevant literature. 

Comparison with previously implemented clustering algorithms proves the 

performance improvement gained by the newly proposed implementation. 64 times 

more resources would be required from older implementations to achieve 

equivalent performance. 

1.6. Thesis Organization  

This thesis is organized in three chapters. Each chapter presents work 

developed and completed independently but under the scope of multiprocessing 

systems development for implementation of applications.  

The relevant references used in this thesis can be found after the conclusions 

chapter (Chapter 5).  

In Chapter 2 the Integer Linear Model formulation for heterogeneous MPSoC 

optimization is presented. The chapter begins with an introduction, the thesis 

contribution and presentation of the relevant literature. An introduction to Integer 

Linear Programming, the chosen JPEG algorithm and a brief description of the 

characteristics of MicroBlaze soft processor follow. Sections 2.6 to 2.8 describe the 
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design space exploration process of the MicroBlaze based reconfigurable MPSoCs. In 

2.9 the Integer Linear Programming model formulation is introduced and in 2.10 the 

proposed extension to include memory occupation is explained. A task graph 

example is presented in 2.11. The power and temperature extension of the ILP 

model is described in 2.12 and an implementation on a similar task graph is 

presented in 2.13. The chapter finishes with the conclusions. 

Chapter 3 contains the description of the work included in the Machine 

Vision developed for real-time flow detection on microfluidic LoCs. This chapter also 

begins with an introduction and thesis contribution. In 3.2 a small introduction in 

mcrofluidic technology and experiments is included and related work from the 

literature follows in 3.3. In 3.4 we have the system specifications and in the 

following section the proposed system is described. The exploration process is 

explained in 3.6 and more specifics on the edge detection preprocessing step in 3.7. 

The chip frame detection stage is briefly introduced in 3.8 and the flow detection 

stage in 3.9. 3.9.1 is a detailed description of the center of mass calculation module 

and 3.9.2 of the median calculation module. The alarm point detection module is 

described in 3.9.3. Section 3.10 presents the finalized system core and the testing 

results can be seen in 3.11. The chapter ends with the conclusions and future work. 

Chapter 4 is the work on the 2D pixel clustering implementation for the 

ATLAS Fast TracKer. Again the chapter begins with an introduction and the thesis 

contribution and then the related work follows. Section 4.3 contains the necessary 

background information on the application: the ATLAS detector, the ATLAS pixel 

detector, the FTK system and the clustering problem itself are described to allow the 

reader to understand the properties of the problem. The extensive description of the 

2D pixel clustering implementation begins in 4.4. In sections 4.4.1 - 4.4.3 the three 

fundamental modules, the hit decoder, grid clustering module and centroid 

calculation module, are described. Section 4.5 describes the necessary additions 

made to make the system parallel with a generic number of parallel engines. Two 

extra modules were added, the parallel data distributor module and the data merger 

module, described in 4.5.1 and 4.5.2 respectively. The process of functional 

verification and design space exploration is illustrated in 4.6 Sections 4.7 to 4.9 

contain the testing results of the implementation and a comparison with a previous 
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clustering approach is reported in 4.10. Statistics that derive from the ATLAS 

experiment and the nature of the pixel detector are presented in 4.11, while the 

hardware testing process is illustrated in 4.12. The chapter ends with future 

developments and conclusions. Extra information on the design and the hardware 

testing process is available in Appendices A and B after the publications. 

The last chapter (Chapter 5) of this thesis presents the conclusions from the 

presented work. It reviews all the derived results from this dissertation and 

presents targets for future research. 



 

15 
 

Chapter 2 

Exploration and Modeling 
 of MPSoC Performance 

2.1. Introduction 

In recent years embedded applications present a constant increase in 

complexity and computational intensity. These applications demand the 

development of systems that are powerful enough to cope with the applications’ 

characteristics as well as efficient enough to do so with the minimum possible cost. 

The cost of such systems derives from multiple factors, such as development time 

and time to market and of course manufacturing costs.  

In addition, modern multimedia, signal processing and communication 

applications rely on standards that change continuously and therefore the 

applications’ algorithms need to be constantly updated. As a result the systems 

developed for such applications need to have inherent flexibility. The answer to such 

demands comes from FPGA multiprocessing systems, where the power from the 

multiprocessors can be combined with the reconfigurability of the device. 

All the latest advancements in the FPGA technology have made the devices 

available larger and more powerful, with a variety of memory architectures offered 

on both the device itself and the device board as external components. The 
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combination of these elements has directed the designers to the study and 

implementation of FPGA based multiprocessing platforms. These architectures offer 

high computational power and extreme design flexibility by providing configurable 

characteristics such as the number of processors, memory size and type, 

interconnection structures and buses and more. However, the vast amount of 

configurable parameters in such systems pose a great challenge to the designers and 

increase the time and effort needed for the final implementation of the system, thus 

eliminating one of the FPGA’s greatest advantages, the limited time needed from 

design to prototyping. 

In addition, as FPGA logic densities have increased substantially and so has 

their performance, but this has also lead to the undesired effect of increased power 

dissipation, increased device temperatures and the generation of device hotspots 

during operation time. Such phenomena can cause penalties in performance by 

reducing operational speed and lead to a greater power consumption due to 

increased leakage currents. Great fluctuations in device temperature also reduce 

reliability and cause device aging. In order to tackle such phenomena designers 

direct their efforts into finding the optimum architecture mapping and application 

scheduling which reduces thermal implications. 

The solution proposed is the formulation of different design models, mostly 

of integer linear programming (ILP) that identify the optimal hybrid MPSoC design 

for each application, taking into consideration the constraints set by the designer. 

These constraints can be based on performance, availability of resources, power 

consumption, operating temperature or a combination of the above with different 

weight factors. The target is the design optimization that suits the application needs 

as well as the implementation platform of choice. 

2.1.1. Thesis Contribution 

The importance of system optimization is known to every experienced 

embedded systems designer. However, the design space exploration that is 

necessary is a tedious and time consuming process. Significant research effort has 

been invested by various groups for the limitation of the design space exploration 

time, by trying to formulate the problem using ILP and developing automated tools 
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for the design, synthesis and implementation of these systems. However, insufficient 

attention has been paid on the impact of the different memory architectures on the 

designs. There are also efforts on developing power and temperature estimation 

models, but a combined model that a designer can fine tune to demand has not been 

presented yet. 

The initial effort of the presented research was to gain experience by a hands 

on design space exploration of FPGA MPSoC architectures. A very popular image 

processing algorithm (JPEG) was used and the platform of choice was Xilinx FPGAs. 

In total 15 system architectures were studied with 20 different types of algorithm 

partitioning. Emphasis was laid on using different types of parallelism (data/task) 

and different types of memory configurations (external memory/local memory and 

combined). 

The design space of multiprocessing FPGA platforms was studied, taking into 

account the number of processors, data-level and task-level parallelism, the different 

interconnection strategies and adding on top of these parameters the different 

memory architectures offered. The intention was to formulate the complete design 

space exploration problem, including the parameters of internal and external 

memory resources, as well as the possibility of resource sharing. Such a model is 

proposed in this thesis. It was developed using Integer Linear Programming (ILP). 

The proposed model: 

• automatically generates the desired architecture for a given 

application task graph 

• takes into consideration the instruction and data memory needed for 

each microprocessor when a task is mapped for execution 

• supports objective functions for area, time and memory usage. 

The same ILP model was then extended to include power formulation that is 

used for temperature estimation for each processing unit of a hybrid FPGA MPSoC 

(soft processors and hardware accelerators) as well as the mean device temperature 

at regular time intervals. The motivation was the incorporation of the 

power/thermal formulation into the existing ILP model that optimizes the FPGA 

system implementation area and the application’s execution time in order to provide 
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a complete solution for design space exploration. With this work, power and 

temperature constraints are added to the model and thus present a system modeling 

formulation that produces an estimation of the most important system 

characteristics (area, time, memory usage, power, temperature) at a very early 

system development stage. The application mapping procedure takes into account a 

temperature threshold for all system components. Appropriate task scheduling is 

selected to decrease power dissipation concentration and therefore decrease the 

possibility of hotspot generation. 

The necessary variables and constraints for the presented model can be 

produced through an appropriately designed parser and the model itself can be used 

through open source and commercial ILP solvers. The proposed design space 

exploration and model formulation from this research where published in [21] and 

[22].  

2.2. Related Work 

The problem of the design space exploration of MPSoC systems has been 

addressed by a number of research groups. The ESPAM toolchain [23] generates 

MPSoC platforms from high level description languages and maps them on FPGAs. 

However, it uses a one to one mapping algorithm which makes resource sharing 

impossible. Resource sharing through the use of e.g. external memories results in 

more efficient architecture design and is taken into account in the presented design 

space exploration. 

The Eclipse work [24] defines a scalable architecture template for designing 

stream-oriented MPSoCs. However, their template is limited only to task-level 

parallelism exploitation.  

In [25] a design space exploration for the JPEG algorithm is offered for 

implementation on an OSCAR type multiprocessor architecture. Even though data-

level parallelism is partly explored in this paper, there are no additional memory 

interfaces offered or direct comparison of implementations with or without 

resource sharing. 
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The work in [26] is the one more closely related to the design space 

exploration concept in this thesis. It presents an automated system for design space 

exploration for a JPEG implementation on a Xilinx FPGA. However, their exploration 

is limited to pipelined implementations of the algorithm and data-level parallelism is 

not yet explored. In addition, the impact of shared or non-shared memory resources 

and/or use of on board memory versus external memory are not taken into account. 

The work in this thesis comes to fill this void and offer a more complete design space 

exploration for a better visualization of the variety of MPSoC implementations 

offered on an FPGA. 

Different research groups have proposed ILP models that lay emphasis on 

various characteristics of the MPSoC architectures. In [27] Cho et al. present an ILP 

model that is specific for shared communication primitives. In [28] Yang et al. 

proposes a model that takes advantage of task, data level and temporal parallelism. 

However, the number of processors is set as an input and the exploration is used 

solely to define the scheduling and the communication primitives. The works 

presented in [29] and [30] are developed for ASIP multiprocessing systems, with 

their design flexibility limited to the ability to configure the number of the 

processors as well as the configurations of the ASIP processors to the specific tasks. 

Kadayif et al. [31] produces an energy aware ILP model. This model uses 

performance and energy constraints, however, it doesn’t explore different bus and 

memory architectures but merely the number of processors. The work of [32] 

suggests a model for pipelined applications. It is limited though to a specific type of 

communication bus and a shared memory architecture. 

The ILP model proposed in this thesis follows the structure of the one 

introduced in [33]. In that, Theodoridis et al. proposed an ILP model for 

multiprocessing systems with ASICs, FPGAs and microprocessors. The data memory 

of the system is shared and only the configuration memory needed for the FPGA 

reconfiguration is taken into account as a constraint. The model proposed in this 

thesis is configured for hybrid FPGA MPSoC implementations, which include both 

soft processors (such as MicroBlaze) and hardware accelerators and it also includes 

three types of buses, shared buses such as the PLB bus, private buses such as the 

LMB bus and FIFOs. A similar approach based on the same model was also 
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presented by Wu et. al. in [34]. However, memory usage, for data and instructions, 

was not taken into consideration.  

Different approaches have also been proposed for power and temperature 

management in single and multiprocessor systems. In [40] Kumar et. al. propose a 

thermal-aware scheduling algorithm for a single processor system. The work in [41] 

and [42] present power and temperature management through scheduling for 

MPSoC. In [41] emphasis is layed on dependability issues because of temperature 

fluctuations, while [42] targets Dynamic Voltage and Frequency Scaling. However, 

they are both limited to homogenous MPSoC. Bhoj and Bhatia [43] demonstrate a 

method for a more uniform temperature distribution on an FPGA, but the 

application is restricted to hardware FPGA implementations (no soft-processors are 

taken into consideration). [44], [45] and [46] present three different ILP systems for 

temperature management. The ILP of [44] targets behavioral synthesis for ASIC 

design. Coskun et. al. [45] rely on OS-level scheduling for MPSoCs. Mohanty et. al. 

[46] proposes a system which exploits datapath scheduling for a single processor. 

The model proposed in this thesis allows a design space exploration with a 

variety of objective functions that express the main characteristics of a system, such 

as performance and usage of hardware resources, and additional characteristics, 

such as usage of memory resources, power and temperature. To the best of our 

knowledge a model that combines all the above characteristics has never been 

proposed before. 

2.3. Introduction to Integer Linear Programming 

The formulation used for the description of the proposed model is Integer 

Linear Programming. A very good introduction to Integer Linear Programming is 

provided in the “Applied Integer Programming” book by Chen, Batson and Dang 

[47]. Linear Programming (LP) is a class of constraint optimization problems (COP) 

in which we seek to find a set of values for continuous variables 1 2( , ,..., )nx x x  that 

maximizes or minimizes an objective function z , while satisfying a set of linear 

constraints with the following format: 
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Maximize: 
j j

j
z c x=∑

 

 

Subject to: 
ij j i

j
a x b≤∑

 
( 1, 2,..., )i m=  

 0ijx ≥
 

( 1, 2,..., )j n=  

Equation 2.1. Linear Programming Constraint Format 

An Integer Linear Programming (ILP) problem is an LP problem where at 

least one of the variables is restricted to integer values. An ILP problem in which 

integer variables are restricted to be 0 and 1 is called a binary integer programming 

problem. 

Combinatorial Optimization Problems are discrete problems where a 

solution in a finite set of solutions is sought and this solution maximizes or 

minimizes and objective function. COPs are very tightly related to ILPs, and most 

COPs can by formulated as ILPs and/or binary IPs. A very well known example of an 

ILP formulated COP is the travelling salesman problem [48]. ILPs are solved using a 

variety of algorithms, the most widely implemented one being the Simplex 

algorithm. The Simplex algorithm is used by most commercial and open source ILP 

solvers such as LP-solve [39], IBM CPLEX and others. Hardware implementations of 

the Simplex algorithm has also been proposed by Bayliss et al. [49] and Mittal et al. 

[50] and have also been developed by AUTH-eLAB in the form of a post-graduate 

thesis [51] (co-supervised under this PhD Thesis development). 

The design space exploration model for Hybrid MPSoCs can be easily 

formulated as an ILP problem as it is clearly an optimization problem where the 

objective function needs to be defined according to each application’s and platform’s 

needs. 

2.4. Algorithm Selection 

In order to explore the capabilities of different multiprocessor architectures 

implemented onto an FPGA, the JPEG decoder was chosen as an algorithm that is a 

widely used streaming multimedia application and presents different types of 



 22 

parallelism. The source used is the Powerstone Benchmark JPEG decoder, a popular 

benchmark for characterization of different processing systems. 

The Powerstone JPEG decoder consists of four stages: the 1-D DC prediction 

stage, the Entropy Decoder, the DeQuantization and the two dimensional IDCT stage. 

Each stage processes an 8 x 8 pixel block at execution time. There is no data 

dependence among 8 x 8 blocks in JPEG decoding except in the 1-D DC prediction 

stage. This allows the exploration of different partitioning approaches of the 

algorithm, taking advantage of both task-level and data-level parallelism. The 

software itself is clearly written and requiring less effort to partition. 

2.5. MicroBlaze Soft Processor 

The design space exploration requires a flexible and reconfigurable 

implementation platform and FPGAs were the solution. To implement several 

different MPSoC architectural scenarios a soft processor is needed that can be 

implemented multiple times on an FPGA device and has several different parametric 

characteristics. Since our platform is a Xilinx FPGA, MicroBlaze [36], the soft 

processor developed by Xilinx was the best choice. 

The MicroBlaze embedded processor soft core is a reduced instruction set 

computer (RISC) optimized for implementation in Xilinx FPGAs. The MicroBlaze 

processor has some fixed characteristics, but offers a great degree of flexibility, 

including some configurable characteristics in its architecture, a variety of memory 

structures (use of cache and size, access to external memory via a specific interface 

etc.) and the ability to communicate with other hard processors (PowerPC), soft 

processors (MicroBlaze) and customized co-processors with a variety of buses (AXI, 

PLB, FSL etc.) In Figure 2.1 the MicroBlaze core block diagram is presented. The 

shadowed blocks are the ones that can be configured or opted out from the 

implementation. 
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Figure 2.1. MicroBlaze Core Block Diagram (© Xilinx Inc.) 

The MicroBlaze processor is offered as an IP core integrated in the Xilinx 

Tools and can be easily configured with the use of wizard interfaces. It can be 

optimized for area or performance. The number of MicroBlaze processors that can 

be implemented in a device is only limited by the available resources. 

2.6. Architecture Styles 

The starting point of all design space explorations is the definition of a 

comparison reference. The comparison reference is set by profiling the execution 

time of the application on a single MicroBlaze processor system. The design space 

exploration was expanded to systems with up to four MicroBlaze processors. 

Different architectures are implemented to take advantage of data-level parallelism 

or/and task-level parallelism. The bottleneck in the design space exploration of such 

systems lies in the limited memory throughput and the unavailability of finer task-

level parallelism in the algorithm itself. Through the exploration process it was 

demonstrated by the performance results that there is no expected gain or 

possibility of exploitation of data/task-level parallelism by expanding our systems 

with more than four processors. The limit was set to four processors because, as the 

previous work presented in [23] it was found that the existing levels of parallelism 

within the existing code could not profit for further addition of resources. 
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The MicroBlaze processors are interconnected through Fast Simplex Links 

(FSL) [37], a Xilinx developed inter-processor bus that is implemented as a FIFO and 

can also serve as a data buffer. When data-level parallelism is used, the FSL FIFO 

depth is set to 16 and it is only used for basic synchronization between the 

processors (a processor is defined as a “master” and controls the operation of the 

system). When task-level parallelism is used, the FSL FIFO depth is either set to 16 

when only the pointer for the pixel block is sent through the bus (use of external 

memory), or set to 64 (8 x 8) when the whole pixel block data is propagated through 

the FSL (use of local memory per processor). It must be noted that the size of 16 

words was imposed as a minimum by Xilinx Tools since a FIFO cannot be 

implemented by the Core Generator with less than 16 words size. In reality 2 words 

depth would be sufficient. 

Apart from the different number of processors the design space exploration 

includes two different memory architectures with three different memory access 

approaches. The first memory architecture uses external memory (DDR2, offered by 

the Xilinx development board used, the xupv5-lx110t) via the component MPMC. In 

this case each MicroBlaze is implemented with 2kb of instruction cache and 4kb of 

data cache and an 8kb local BRAM. The whole address space of the external memory 

is cacheable for each processor. In this particular architecture two different memory 

access approaches are explored: In the first both the data and the instructions for 

each processor are stored in the DDR2 and the local BRAM is used only for the 

processor heap and stack. In this case, when task-level parallelism is used, only the 

pointer of the processed pixel block is propagated to the next processor, thus 

reducing the delay due to the FSL bus. In the second approach each 8 x 8 pixel block 

is downloaded to the local BRAM prior to processing. In this case the whole pixel 

block data is propagated through the FSL when task-level parallelism is used. For 

this memory architecture data-level parallelism is also examined, as well as a 

combination of both. 

For the second memory architecture each MicroBlaze is implemented with 

only one local BRAM of 128kb, and therefore only internal FPGA memory is used. 

Since there is no shared memory or common address space for the processors only 

task-level parallelism is examined. 
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In total 15 system architectures were studied with 20 different types of 

algorithm partitioning, by exploiting data and task level parallelism. 

2.7. Case Study 

The different processing systems were developed using the Xilinx EDK tool. 

The algorithm partitioning and implementation was done using the Xilinx SDK tool. 

The performance measurements were made by integrating a timer for each 

processing element of the system. The timers used were XPS timer that is an IP core 

provided by Xilinx. Each XPS timer has two independent timers with configurable 

counter widths and interrupts, event generation, and event capture capabilities. The 

XPS timer counts cycles of the system clock. Timer values were called before and 

after each measured task and the difference was used as execution cycles count. 

The first two implementations studied were a single MicroBlaze system with 

external memory and a single MicroBlaze System with internal memory for the 

purpose of acquiring information for the execution time of each stage. The results 

are presented in TABLE 2.1. As we see in TABLE 2.1 the results presented for both 

architectures are similar and the most computationally intensive stage is, as 

expected, the 2D-IDCT. The performance similarity is expected as the system with 

external memory also uses cache for the processor, therefore the impact of the delay 

in data propagation between stages was insignificant. 

 

TABLE 2.1. Execution Time of JPEG Stages on the Reference System 

Single MB 
JPEG Decoding Stage 

DC prediction Entropy Decoding DeQuantization 2D-IDCT 

DDR2 3,81% 28,83% 10,81% 48,69% 

BRAM 4,11% 29,92% 8,50% 51,00% 
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Figure 2.2. Explored MPSoC Architectures 

The different types of multiprocessor interconnections used in the design 

space exploration are demonstrated in Figure 2.2. As said in the previous section the 

first memory architecture was used to explore both task-level and data-level 

parallelism. In the case were only the external memory (DDR2) is used, the FSL 

buses have a FIFO depth of 16. When data-level parallelism is used (architectures 

(1), (2) and (3) in Figure 2.2) one MicroBlaze serves as a master and the others 

serve as slaves. In the master MicroBlaze the execution of the 1-D DC prediction 

algorithm for the whole image is executed, since the data dependence does not allow 

exploitation of data-level parallelism in this stage. However, the measurements 

taken from the reference system (TABLE 2.1) clearly show that this does not affect 

the performance significantly (less than 4.2 % of total execution time).After this 

stage is finished the master MicroBlaze divides the image data in equal parts and 

sends the corresponding pointers to the slave processors. When task-level 

parallelism is used (architectures (1), (2) and (4)) the algorithm is partitioned in the 

following manner: In the dual MicroBlaze system, the 2D-IDCT is executed on a 

separate processor. In system architecture (2) two different algorithm partitioning 

approaches are used: in implementation (a) the DeQuantization stage is executed in 

MicroBlaze 1 and the 2D-IDCT in MicroBlaze 2 and in implementation (b) the 

DeQuantization stage is executed in MicroBlaze 0 and then each pass of the 1D-IDCT 

is executed separately in MicroBlaze 1 and then MicroBlaze 2. In system (4) the DC 
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prediction and the Entropy Decoding is executed in MicroBlaze 2, the 

DeQuantization in MicroBlaze 1 and each pass of the 1D-IDCT in MicroBlaze 1 and 

MicroBlaze 3. For architecture (4) another option is offered: a combination of both 

data and task-level parallelism. In this option MicroBlaze 0 serves as a master and 

MicroBlaze 1 serves as a slave. The DC stage for the whole image is executed in 

MicroBlaze 0 and then data-level parallelism is exploited. For half the image data 

Entropy Decoding and DeQuantization is executed in MicroBlaze 0 and through task-

level parallelism the 2D-IDCT stage is executed in MicroBlaze 2. For the other half of 

the image data the execution follows the same pattern from MicroBlaze 1 through to 

MicroBlaze 3. 

For this architecture the local BRAM of each MicroBlaze is used for pipelining 

by downloading each 8 x 8 pixel block to the local BRAM prior to the execution of 

each stage. In this manner a small additional delay is imposed to the execution of the 

program by downloading the corresponding data from the external memory to the 

local BRAM, but the delay is compensated by avoiding the delay imposed by the 

simultaneous memory requests to the DDR2 of the different processors (MPMC 

component uses a round robin algorithm to define priority of memory access for the 

processing elements). All the types of data and task-level parallelism described in 

the previous paragraph are also implemented in this case. In this type of design 

space exploration when task-level parallelism is used the FSL FIFO depth is set to 64 

since each pixel block data is propagated through this bus to the next processor. 

When data is transferred through the FSL bus one cycle is needed for the FIFO write 

and two cycles for the FIFO read, but the processor does not need to access the 

external memory for the pixel block data since they are stored in the local BRAM 

after FIFO read is completed. 

For the second memory architecture each MicroBlaze uses an independent 

BRAM of 128kb and therefore no data-level parallelism can be implemented. Task-

level parallelism is used instead. Therefore only the MicroBlaze architectures (1), (2) 

and (4) in Figure 2.2 with FSL links of FIFO depth 64 are implemented. The pixel 

block data is transferred through the FSL link since there is no common address 

space. The partitioning of the algorithm used is the same as for the task-level 

parallelism implementations of the previous architecture. 
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2.8. Experimental Results 

In the design space study of multiprocessing systems on an FPGA a new 

parameter is introduced that is the use of different memory architectures. The set 

reference system for performance comparisons is one with a single MicroBlaze with 

the use of external memory. The equations Equation 2.2(1) and Equation 2.2(2) are 

used for calculating speed up and efficiency as in the work of Wu et al. in [26]. A new 

parameter is also introduced called HW_efficiency (hardware efficiency) to associate 

the area increase of the design with the speed up. The results associated with these 

three parameters are presented in Figure 2.3. 

 

 

_ _ _
_ _ _ _

execution time of multiprocessorSpeedUp
execution time of single processor

=
 (1) 

 _ _
SpeedUpEfficiency

Number of Cores
=

 (2) 

 
_

_
SpeedUpHW efficiency

Area Increase
=

 (3) 

Equation 2.2. SpeedUp Formulation 

 

Figure 2.3. Design Space Exploration Results 

It is clear that the greatest speed up is achieved by the 4 MicroBlaze circuit 

with external memory and use of the local BRAM. The highest speed up achieved is 

3.27 by the system that uses a combination of data and task-level parallelism, 

demonstrating that the exploitation of data-level parallelism should not be omitted 

even in streaming applications such as JPEG. On the other hand, the most efficient 

implementation is the dual MicroBlaze system with task-level parallelism for all 
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three types of system implementations. When the new parameter hardware 

efficiency is taken into account, the systems that achieve the highest value only use 

internal BRAMs. This result was expected since in these systems there is actually a 

decrease in the area in comparison to the reference system. This is due to the fact 

that the instantiation of the MPMC, the Xilinx memory controller used for the 

communication with the external DDR2 memory, occupies a significant area of the 

total architecture of each system. 

In the systems that use only external memory there is a limitation in the 

speed up that can be achieved by data-level parallelism because after the addition of 

the third processor the bottleneck stems from the simultaneous requests for 

memory access by the processors. This bottleneck is overcome by the use of both 

external and internal memories. In the systems where the 8 x 8 pixel blocks are 

downloaded to the local BRAM, data-level parallelism is better exploited since the 

simultaneous memory requests to the DDR2 by different processors are reduced. 

The additional one clock delay in the FSL FIFO read does not impose an overhead as 

big as the one from the data cache misses in the systems without using the local 

BRAM. It can also be pointed that by comparing the two different task-level 

parallelism implementations (a) and (b) using three MicroBlaze processors in both 

architectures, the greatest speed up is achieved by implementation (b) where the 

2D-IDCT is partitioned in two 1D-IDCT stages, executed by separate processors. The 

reason is that the execution times of the processors are better balanced. 

 

Figure 2.4. Design Space Use of BRAM Results 
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Figure 2.4 presents a diagram that demonstrates the hardware efficiency in 

correlation with the use of BRAMs on the board. It is obvious that the designs that 

use only local BRAM demonstrate great hardware efficiency (less area while 

achieving similar speed up) but this is achieved at the expense of the total BRAM 

block usage, except from the system with two MicroBlaze processors. As a general 

result the architectural approach with the best exploitation of the hardware, which 

means the higher hardware efficiency is the dual MicroBlaze system with local 

BRAM use. However, the applicability of such systems is questionable for high-

throughput multimedia applications since the great demands for memory space cast 

the sole use of internal memories prohibitive. 

2.9. Introducing a Task Assigning Model with a Memory Usage 

Parameter 

2.9.1. The Proposed ILP Model 

Little attention has been paid by previous FPGA MPSoC ILP approaches to the 

indispensable amount of memory the system’s microprocessors need for 

instructions and data as well as hardware accelerator memories. Memory usage is 

especially important since modern applications have a need for large memory 

spaces. The important role of memory resources in the performance exploration and 

optimization of MPSoC was also demonstrated by the Case Study in 2.7. The goal of 

this model is to produce a real life model that tackles this weakness. Using the same 

approach as in 2.5, Xilinx FPGAs were the chosen platform and the MicroBlaze [35] 

as the system’s microprocessing unit. The characteristics of the MPSoC that need 

specification by the ILP model were identified. However, these characteristics can be 

easily identified for various platforms and the same approach can be used for any 

FPGA and microprocessor type. 

The application is imported in the model as a directed acyclic graph, a task 

graph, where every node is a task 1 2{ , ,...., }iTASK t t t=  and every edge is a data transfer 

denoted as a queue 1 2{ , ,...., }lQ q q q= . Each task’s granularity can vary from a single 

operation or loop to a set of kernels or functions and can comprise of data reading, 

task executing and data writing procedures which are annotated in the following 
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form 0 1 0 1{ , ,..., , , , ,..., }n i mt r r r e w w wi = . The system model comprises of a set of processing 

elements { }PE B HWµ=  , which includes soft processors 1 2{ , ,...., }kB p p pµ =  and 

hardware accelerators 1 2{ , ,...., }lHW hw hw hw= . A maximum number of available 

processing elements must be defined in the model (MaxPE). A set of communication 

buses { }COM U L F=    is also set, where 1 2{ , ,...., }mU u u u=  are shared buses (PLB buses), 

1 2{ , ...., }nL l l l=  are private buses (LMB buses) and 1 2{ , ,...., }jF f f f= are FIFOs (FSL buses). 

These buses can be turned “on” or “off” as an option in the model depending on the 

explored system architectures. For example if a multi-MicroBlaze system is explored 

the following assumptions must be made: 

• At least one shared bus must exist in every system implementation 

and every soft processor must have at least one private bus. 

• When FIFOs (FSLs) are used for interconnection they are assumed to 

be “uni-directional” connections and the maximum possible number of 

existing FIFOs in every system is when the system is a Completely 

Connected Network (CCN). The number of connections for a CCN is 

( 1)N N −  where N  is the number of soft processing elements. 

Each processing element and communication bus is assigned a predefined 

area constant , , , ,k l m n ja b ahw au al afµ , the value of which is the number of FPGA slices 

required by each component. The total system area is defined as A, and a constant 

A_MAX is set as a constraint for the maximum system implementation area. For each 

task or communication procedure an integer variable its  is defined for the start time 

of the procedure and another integer variable itf  for the finish time. The variable tf  

represents the completion time of the whole application on the architecture. A 

_T MAX  time constant is set, which is the maximum allowed system operation time. 

The time a task needs to complete its operation on a processing element is a preset 

value set in the model as a ,i ktZ constant, where i  is the task and k  the assigned 

processing element. All the time variables and constants are measured in time units. 

The basic decision variables and constraints of the model are presented in TABLE 

2.2 and TABLE 2.3. 
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TABLE 2.2. ILP Model Decision Variables 

Decision Variables 
1    is mapped on processor k or

, , , ,
 hardware accelerator k , ,
0   otherwise                                          
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,
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TABLE 2.3. ILP Model Basic Constraints 

Constraints Description 
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 Time Constraints 

 

2.10. Memory Usage 

The ILP model is extended to incorporate memory usage and BRAM 

occupation by making the following assumptions for the architecture:  
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• Each microprocessor corresponds to one microprocessor memory 

which is used for instruction and data storage.  

• Each microprocessor communicates with its dedicated memory 

though a private LMB.  

• For each task mapped on a microprocessor the instructions must be 

preloaded to the instruction memory space.  

• The data memory space of each microprocessor can be reused by each 

task mapped on this microprocessor.  

• All microprocessor memories are instantiated on BRAMs.  

• The option to instantiate hardware FIFOs on BRAMs is offered as well. 

An integer variable MB  is defined for the total BRAM occupation for the 

system architecture. A value of _MB MAX  is set as the maximum number of available 

BRAMs that can be used by the developed system. For each processing unit a 

variable kM  is created which constitutes the memory space needed by the specific 

processor. A second variable kMB  is also defined for the number of BRAMs needed 

for the instantiation of this memory. For computational purposes a variable kMS  is 

defined which is the actual memory size for each processing unit. For each task 

mapped on a particular processing element (microprocessor or hardware 

accelerator) there is a preset value ,
e
i kmPD  or ,

e
i kmHWD  which constitutes the amount 

of data memory space needed for the execution. For the microprocessing units there 

is also a predefined value ,
e
i kmPI  which is the instruction memory space needed for 

the application execution on the processor. Also the possibility of the hardware 

FIFOs Fl  to be implemented on BRAMs is taken into consideration. In this case a 

preset value ,
,
r w

i lmF  is defined for each FSL instantiated as BRAMs. 

The memory constraints are based on the following principle: the amount of 

memory space each microprocessor needs is the total number of instruction 

memory space needed by all the tasks mapped on this specific processor and the 

data memory space size of the task that requires the greatest data memory 

space. The difference between instruction memory space and data memory space is 
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that the instructions for each task have to be preloaded on each processor, whilst 

data memory space can be reused. 

The total memory space required by each processing unit is defined by 

constraint Equation 2.3(1). The supported memory sizes that can be used by a 

MicroBlaze processor are a power of 2 [38]. Therefore the actual memory size of 

each MicroBlaze is the smallest power of 2 number that is greater than Mk  Equation 

2.3(2). 
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Equation 2.3. Memory Constraints 

In addition there is a set rate between memory size and BRAM usage for each 

specific FPGA family. In Spartan-3 and Spartan-6 FPGAs 8k memories of 32bit width 

need 4 BRAM primitives (minimum requirement minMB ), whilst in Virtex-5 and 

Virtex-6 FPGAs 4k memories of 32bit width need only one BRAM primitive. This rate 

is imported to the model as a constant MBC  Equation 2.4(3). The total number of 

BRAM primitives required by the implementation is defined as MB  and it is 

constrained to be smaller than _MB MAX Equation 2.4(4). 
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Equation 2.4. Memory Constraints 
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With the above addition our proposed ILP model offers the flexibility to be 

solved based on a variety of objective functions. It can be solved with a set area 

constraint A , set memory constraint MB  and minimize the time tf  (optimize 

performance),or set time constraint tf , set memory constraint MB  and minimize 

area A  (optimize area), or set time constraint tf , set area constraint A  and 

minimize memory usage MB  (optimize memory usage). These options offer extreme 

flexibility to the designer to explore and choose the optimum architecture for an 

application implementation. 

2.11. Trial System (Memory Model) 

In order to demonstrate the efficiency of the proposed ILP model, a trial 

system is presented. A random task graph (Figure 2.5) of adequate complexity is 

used as input for the model. It is assumed that there are 4 microprocessors available 

and 2 hardware accelerators, one assigned to task 2 and one to task 5. The time 

delays and memory requirements of each task are presented in TABLE 2.4. The area 

values for each one of the resource elements, MicroBlaze, dedicated HW task 2, 

dedicated HW task 5, PLB, LMB and FSL are set to 1500, 2000, 2200, 450, 20, 200 

slices respectively. The device chosen is the Spartan-6 and therefore MBC  is set to 0.5. 

The experiment is performed on an Intel i3 computer with 4Gb RAM. The lp_solve 

linear programming solver [39] is used. 

The initial ILP model (without memory variables and constraints) produces 

650 variables and 1057 constraints. The ILP model with memory usage produces 

670 variables and 1078 constraints. A series of ILP model implementations will be 

presented for different objective functions and constraints to demonstrate our 

model’s flexibility. 

The first implementation test is for optimizing performance. The objective 

function is minimizing tf . The constraints for area and memory usage are set to the 

maximum for the assumed processing units. The solver required 730sec to produce 

a solution. The minimum processing time achieved is 66 time units with an area of 

10410 slices. The system produced includes 3 MicroBlaze processors, 2 hardware 
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accelerators, 3 LMB buses, 6 FSL buses and 1 PLB bus. It requires 96 BRAMs (192kB 

memory space). 

The second implementation test is for optimizing memory usage. The 

objective function is minimizing MB . The constraint for time is set to 120 time units 

and the constraint for the area is set to the maximum available slices. The solver 

required 408 sec to produce a solution. The minimum BRAM usage achieved is 48 

(96 kB memory space). This was achieved for execution time 115tf =  time units. The 

system produced includes 2 MicroBlaze processors, 2 LMB buses, 2 FSL buses and 1 

PLB bus. It occupies 3890 slices.  

The third implementation test a case of system fine tuning is presented. Tight 

constraints are set for both area and memory usage. Area is set to be less than 6000 

slices and BRAM usage less than 96. The architecture with the best performance 

under the above constraints is wanted, therefore the objective is again minimizing 

tf  . The solver required 312 sec to produce a solution. The minimum processing 

time achieved is 75 time units with an area of 5610 slices. The system produced 

includes 3 MicroBlaze processors, 3 LMB buses, 3 FSL buses and 1 PLB bus. It 

requires 80 BRAMs (160kB memory space). For this implementation the Gantt 

scheduling graph of the tasks mapped on the processing units which was produced 

by our model is presented in Figure 2. 

TABLE 2.4. Time Delay and Memory Requirements 

 MicroBlaze Hardware 

Tasks t.u. Instr. Mem. (kB) Data mem. (kB) t.u. Data mem. (kB) 

E1 10 5 20   

E2 15 5 30 5 16 

E3 5 5 20   

E4 10 5 30   

E5 20 10 30 8 16 

E6 5 5 20   

E7 10 5 40   
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Figure 2.5. Application Task Graph 

 

Figure 2.6. Gantt Scheduling Graph 

2.12. Power and Temperature ILP model 

The same model can be extended to include estimations for power and 

temperature. The core of the model remains the same but new decision variables are 

added to calculate power as a first step, and by using power estimation extract the 

execution time temperature. 
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2.12.1. Power and Temperature Estimation  

The temperature of an FPGA device is estimated through the following 

formula [52]: 

J Ambient JA totalT T Pθ≥ + ⋅  

Equation 2.5. FPGA Device Temperature 

JT  is the junction temperature,  JAθ  is the junction to ambient thermal 

resistance and it is provided by the FPGA specifications and totalP  is the total applied 

power. The total applied power for a system can be estimated through appropriate 

development tools provided by major manufactures such as the Xilinx XPE [40] and 

the Altera PowerPlay Early Power Estimators [53] from early development stages. 

These tools can estimate static and dynamic power for the system and device 

temperature by taking into account early design information such as occupied area, 

clock frequency and estimated toggle rates. However, these values are of estimated 

average power for the complete system and cannot illustrate power and 

temperature fluctuation during operation or temperature diversity on the surface of 

the device. 

The work in this thesis comes to increase the granularity of the provided 

power and temperature estimations by implementing a “sliding power observation 

window” for each implemented processing unit (Figure 2.7).  

 

Figure 2.7. Sliding Power Observation Window Illustration 

The principle of the “sliding power observation window” is that in order to 

calculate temperature through the formula in Equation 2.5 at a specific time interval 

E2P1
ts1 Time Units

E1

tf1tPs tPf

Power Observation Window

ts2 tf2



 39 

on operation time for a system we need to know the average applied power at that 

time interval. The following assumptions are made: 

• The power consumption per task per processing unit is a known 

value. 

• The thermal energy due to the power consumed before the 

observation window’s starting point is already removed from the 

device and doesn’t influence present temperature. 

• The average power for a processing unit is the total energy consumed 

by the processing unit at a time interval divided by the total interval 

time. 

For example in Figure 2.7 it can be seen that processing unit P1 executes parts of 

two tasks during the moving power window. If 1Pd  and 2Pd  are the dynamic power 

for tasks E1 and E2 respectively, and Ps  the static power of the processing unit then 

the average power for this window is: 

1 ( 1 ) 2 ( 2)
1

Pd tf tps Pd tPf ts
Pw Ps

tPf tPs

⋅ − + ⋅ −
= +

−
 

Equation 2.6. Average Power for Execution Window 

The estimated temperature of the processing unit is: 

1 1Ambient JATw T Pwθ= + ⋅  

Equation 2.7. Estimated Temperature of the Processing Unit 

The system temperature T  is calculated by the weighted sum of all 

processing units’ temperatures [40]. 

k k
k

T aw Tw= ⋅∑  
[ ]1, total number of processing unitsk∀ ∈  

processor k area

total system areakaw =  

Equation 2.8. System Temperature 
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The appropriate “sliding power observation window” size can be calculated 

through proper device characterization techniques which are beyond the scope of 

this work. For ease of use it is assumed that it must be max(task execution time)tPf tSf− ≥ . 

At this stage of the model’s development the impact of neighboring temperatures for 

a processing unit’s temperature is not considered since routing information is not 

included in the model, but the impact of the area of each processing unit on the 

device is included in the weight factor of the system temperature. 

2.12.2. Power and Temperature ILP Formulation 

In Figure 2.8 the five different timing positions of a task relative to the power 

window can be observed. For the power calculation decision variables must be 

applied in order to include only the duration of the task that lies within the window 

interval in the estimation. As ILPs are NP-complete it is highly important to produce 

a formulation that generates the minimum amount of variables and constraints. 

Through experimentation the following formulation was chosen. 

 

Figure 2.8. Task Position Relative to Power Observation Window 

The task start and finish time must be compared with the start and finish 

time of the moving power window. To do so the following binary decision variables 

with an appropriate set of constraints are defined. 

TABLE 2.5. Power Window Binary Decision Variables and Constraints 

Variables Value Constraints 

,1
ot iZPs  1: when its tPs≥  

0: otherwise 
, , ,1 2 3 1

o o ot i t i t iZPs ZPs ZPs =+ +
 

,11 0
oi tts tPs ZPs− ⋅ ≥  

,1 ,1(1 1 ) 2 0
o oi t ttf ZPs t ZPsPs− − ⋅ ≥  

,1 ,1(1 2 ) 3 0
o ot titPs ZPs tf ZPs− − ⋅ ≥  

,2
ot iZPs  1: when i itf tPs ts≥ ≥  

0: otherwise 

,3
ot iZPs  1: when itPs tf≥  

0: otherwise 

E1 E1P1
ts1 Time Units

E1

tf1tPs tPf

Power Observation Window

ts1 tf1 ts1 tf1

E1 E1
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,1
ot iZPf  1: when its tPf≥  

0: otherwise 
, , ,1 2 3 1

o o ot i t i t iZPf ZPf ZPf =+ +
 

,11 0
oi tts tPf ZPf− ⋅ ≥  

,1 ,1(1 1 ) 2 0
o oi t ttf ZPf t ZPfPs− − ⋅ ≥  

,1 ,1(1 2 ) 3 0
o ot titPf ZPf tf ZPf− − ⋅ ≥  

,2
ot iZPf  1: when i itf tPf ts≥ ≥  

0: otherwise 

,3
ot iZPf  1: when itPf tf≥  

0: otherwise 
 

The power consumed by a task’s operation is: 

, , , ,,( ) 2 1 3 ( ) 2
o o o ot i t i t i t ii kPd tf tPs ZPs Pd ZPs ZPf Pd tPs ts ZPf

Pw
tPf tPs

tZι ι ι ι ι
ι

⋅ − ⋅ + ⋅ − ⋅
=

−

⋅⋅ ⋅ +

 

Equation 2.9. Power Consumed by a Task’s Operation 

The total power consumed by a processing unit during the power window 

interval is: 

,k i i k
i

k kPtw Ps CSX Pw X= ⋅ + ⋅∑
  

i TASK∀ ∈  

Equation 2.10. Total Power Consumed by a Processing Unit (Power Window) 

 

It is obvious that these constraints and formulas include multiplications of 

two model variables, one integer and one binary or two binary variables, which is a 

non linear form that cannot be included in an ILP model. Therefore these 

calculations need to be linearized. For this procedure a method proposed in [45] and 

[39] is used. Firstly a suitably large number must be chosen ( _T MAX  is suitable in 

this model) which will be a bound for the variables. For each i it ZP⋅  calculation a new 

variable i i itZP t ZP⋅=  is defined. This variable must satisfy the following constraints in 

order to substitute the non linear multiplication: 
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_i itZP T MAX ZP≤ ⋅  
_ _i i itZP t T MAX ZP T MAX− + ⋅ ≤  

_ _i i itZP t T MAX ZP T MAX− − ⋅ ≥ −  

Equation 2.11. Constaints for Not Linear Multiplications 

Thus, the multiplied variables are substituted by the new defined itZP

variable. 

A variable kTPw  is set for the estimated junction temperature of a processing 
unit during an observation window. Each kTPw  is defined as follows: 

k Ambient JA kTPw T Ptwθ+ ⋅=  

Equation 2.12.Estimated Junction Temperature 

The system temperature T  is calculated by calculating the weighted sum of 

all processors’ temperatures. Since total system area is also a model variable and 

cannot be a divisor in a formulation, the weight factor is substituted in the following 

way, where approximate system area is the area calculated for the same constraints 

without the power and temperature ILP. 

k k
k

T aw TPw= ⋅∑
 

k PE∀ ∈ , 

processor k area

approximate system areakaw =
 

Equation 2.13. System Temperature 

 With this formulation constraints can be set for system temperature for 

every chosen observation window, as well as the temperature of each processing 

unit. By setting a constant _Temp MAX  these constraints are defined as follows: 

_T Temp MAX≤  (1) 

_kTPw Temp MAX≤ , k PE∀ ∈  (2) 

Equation 2.14. Temperature Constraints 
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Constraint Equation 2.14(2) includes constraint Equation 2.14(1) by 

definition. These constraints adjust both architecture and scheduling in order to 

comply with the temperature thresholds and decrease the possibility of hotspot 

generation during operation time. If multiple observation windows are required 

then a new set of variables and constraints must be added for every new window. 

2.13. Trial System Results (Power/Temperature Model) 

The complication increase which the Power and Temperature estimation 

causes to the introduced ILP model is examined first. A basic three node graph is 

used and it is assumed that there are three microprocessors and a hardware 

accelerator available for implementation, as well as all three types of communication 

buses for the edges (shared, private and FIFO bus). The simple ILP model generates 

122 variables and 165 constraints. The addition of power and temperature 

estimation increases these numbers to 179 variables and 265 constraints for 

calculation for one window. For every power observation window added, the 

increase of variables and constraints is linear. For two windows 236 variables and 

383 constraints are generated and for three 336 variables and 492 constraints. 

TABLE 2.6. Time Delay and Power Characteristics 

 MicroBlaze Hardware 

Tasks t.u. Static Power Dynamic Power t.u. Static Power Dynamic Power 

E1 10 1 2    

E2 15 1 2 9 0.5 1 

E3 5 1 1    

E4 10 1 2    

E5 20 1 4 12 1 2 

E6 5 1 1    

E7 10 1 2    

 

In order to demonstrate the efficiency of the proposed ILP model, a trial 

system is presented. The same task graph as for the memory design space 

exploration is used (Figure 2.5). It is assumed that there are 3 microprocessors 
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available and 2 hardware accelerators, one assigned to task 2 and one to task 5. The 

task delays, static and dynamic power values for each task implemented on each 

processing unit are presented in TABLE 2.6. A power observation window of 25 time 

units duration is set. The JAθ  is considered to be 6.5 /C W° . The experiment is 

performed on an Intel i3 computer with 4Gb RAM. 

TABLE 2.7. ILP Model Trial System Results 

Const. Area tf System Pe1 Pe2 Pe3 Hw1 Hw2 

min(tf) 11260 66 

5.845 

4.94 

1.28 

1.1 

2.1 

1 

1 

1 

0.7 

0.5 

0.77 

1.3 

56.77  

56.42 

58.31 

57.14 

63.64 

56.5 

56.6 

56.6 

54.54 

53.25 

55.00 

58.64 

_ 100T MAX =  

min(Area) 
3240 100 

4.18 

6.9 

2.28 

3 

1.9 

3.9 

- 

- 

- 

- 

- 

- 

62.66 

70.86 

64.8 

69.5 

62.34 

75.35 

- 

- 

- 

- 

- 

- 

_ 100T MAX =  

_ 70Temp MAX =  

min(Area) 

3440 100 

4.28 

4.076 

2.28 

3.076 

2 

1 

- 

- 

- 

- 

- 

- 

63.14 

61.55 

64.82 

70 

63 

56.5 

- 

- 

- 

- 

- 

- 

 

The basic ILP model created for the optimization of this system generates 

663 variables and 1070 constraints. By inserting two power observation windows, 

one from time units 0 to 25, and the second from 26 to 50 the number of variables 

and constraints increases to 930 and 1582 respectively. We test the model by setting 

various constraints to demonstrate how the system implementation is affected. The 

results are demonstrated in TABLE 2.7. In the System, PE and HW columns we 

present power and temperature for the first and second observation window.  The 

power is measured in Watts and the temperature in oC . Ambient temperature is set 

to 50 o

ambientT C= . We first set the model to execution time optimization with relaxed 

area constraints. As can be seen the system achieves a 66tf =  with area 11260A = , 

utilizing five of the available processing units, two hardware accelerators and three 
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microprocessors. We then set _ 100T MAX =  to allow for area optimization. As can be 

seen by the temperature values in the second observation window Pe2 reaches a 

temperature of 75.35 oC . We set a temperature threshold for all processing units 

_ 70Temp MAX =  and rerun the model with the same time constraint. The result was 

an increase in area 200 slices. This was due to the rescheduling of the tasks on the 

two processing units to keep the temperature below the set threshold, which led to 

the addition of one extra FIFO bus for communication purposes. This model took 

487.78 sec to be solved on the lp_solve ILP solver [39]. 

2.14. Conclusions 

The objective of this research was the definition of a model formulation to 

execute efficient design space exploration for MPSoC systems at an early stage in the 

system design cycle. The first step for this work was a hands on experience on a 

design space exploration performed by developing each system separately and 

profiling the application on it. The chosen algorithm was JPEG as a commonly used 

image processing application. Data and task level parallelism was explored for 

different system architectures, as well as the correlation between performance 

increase and hardware resources usage. Twenty different system implementations 

with 3 different memory approaches and 4 different processor architectures were 

explored. The platform of choice was Xilinx FPGAs and as a processing element the 

MicroBlaze processor was chosen. A new parameter called Hardware Efficiency was 

introduced to associate area increase (resource usage increase) with performance. It 

was observed that a highest speed up of 3.27 was achieved for a 4 MicroBlaze 

system and a highest hardware efficiency of 3.27 was achieved for a dual MicroBlaze 

system with use of internal memory.  

The next step was the introduction of an innovative ILP model for optimizing 

performance, area and memory usage of a hybrid FPGA-based MPSoC is presented. 

The model proposed introduces for the first time the distinct constraint of memory 

usage that is imported without a significant increase in the complexity of the model. 

Memory usage and BRAM occupation is a critical factor of modern MPSoC designs, 

which target high throughput applications. This addition offers extreme flexibility to 
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the designers who can now fine tune the system design according to the specific 

application needs. Different objective functions and constraints were explored. It has 

been demonstrated that the proposed ILP can be easily adapted to minimize 

execution time, memory usage and area. By changing objective functions, the 

different design parameters’ values change significantly to double the value of a 

previous implementation.  

The above model was extended to include temperature management. The 

concept of “sliding power observation window” was proposed for power estimation 

over time during system operation. The inclusion of the power estimation 

formulation to the previous model lead to a model that can optimize the system’s 

most important parameters such as area, time, power and temperature. In addition 

the final model can decrease the possibility of hotspot generation through setting 

temperature thresholds for the processing units. A combination of the offered model 

constraints can produce the optimum system implementation for the designer’s 

needs. One very important characteristic is that the inclusion of the new parameters 

does not impose significant overhead in the number of variables and constraints. 

Future developments will include the automated model generation through a 

parsing tool that will accept as an input the application task graph and the system 

architecture parameters. 
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Chapter 3 

MPSoC Implementation for  
Multimedia Applications 

3.1. Introduction 

Real-time multimedia applications require high performance processing 

systems to implement image processing algorithms. The computational demands 

call for implementations optimized to meet the applications’ needs. The constant 

evolution of standards and the requirement for scalability present challenges that 

only reconfigurable platforms such as FPGAs can answer. More specifically now that 

FPGA fabric is ever denser and the performance that can be retrieved from such 

devices is ever more close to ASIC technology, FPGAs present an excellent solution 

with smaller development costs and significantly smaller time to market.  

Machine vision implementations are now commonly used in industrial, 

biomedical and security applications. Their main role is real-time image-based 

inspection or analysis. A fundamental characteristic of such systems is the use of 

cameras for image acquisition. The resolution and speed of the camera is 

determined by the system’s needs. The acquired images are then processed by a 

sequence of image processing algorithms to extract the required information. 

Machine vision systems have hard real-time response requirements. For several 

applications these requirements can be even critical. Therefore designing a Machine 
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Vision system with hard real-time requirements is a challenging task. Great effort is 

required to analyze the application, define the specifications, explore the possible 

implementation strategies, design, optimize, test and verify the system. All these 

challenges were met and tackled with the work of this thesis. 

3.1.1. Thesis Contribution 

The contribution of this thesis is the design of a complicated Machine Vision 

system that extensively exploits parallelism as well as the design of specific high 

performance parallel modules for image processing. The proposed Machine Vision 

system is integrated in a complex prototype system that includes microcontrollers, 

actuators and sensors. The system was designed in collaboration with Micro2Gen 

Ltd. Micro2Gen proposed a sequence of algorithms to be implemented and the 

AUTHeLAB team adapted them to be implementable on hardware. The machine 

vision system consists of an edge detection module, a bounding box detection 

module and the flow detection system. 

For this thesis the bit-accurate simulation for the edge detection system was 

developed. With the available bit accurate simulation the necessary precision for the 

edge detection was defined, exploration for the architecture requirements was 

executed and the necessary parallelism was chosen. 

In addition, high performance modules for the flow detection system were 

conceived and developed. More specifically a center of mass (CoM), an alarm point 

detection module and a median calculation module were designed and developed to 

be included in the machine vision system, but to be generic enough to be used in 

various image processing applications. The center of mass and alarm point detection 

modules are the cores of operation for the flow detection process. Center of mass 

calculation is also very commonly used in many image processing algorithms for 

data reduction (as suggested also in Chapter 4). Median calculation was introduced 

as an improved method for identifying flow coordinates. Median calculation module 

exploits parallelism in calculation and memory design. Both modules center of mass 

and median modules can be used in a variety of image processing applications, such 

as the one presented in Chapter 4. 
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The scientific results from the edge detection module implementation were 

published in [90] and [91]. The flow detection modules and the median calculation 

module were published in [96] and [142]. The complete machine vision system was 

published in [120] and [88]. 

The work of this research was partially funded by the research project “Lab-

on-Chip” of the Fund for Hellenic Technology Clusters in microelectronics 

Framework. 

3.2. Microfluidics 

Before the Machine Vision system is described, the application field of 

microfluidic Lab-On-Chips (LoCs) must be introduced to demonstrate the motivation 

behind the application.  

The advancements in biology and molecular diagnostics call for faster and 

cheaper technologies to execute analyses. This has lead to the use of microfluidics 

and lab-on-chip systems (Figure 3.1) becoming a very important factor in diagnostic 

procedures. In vitro microfluidic analysis on Lab-on-Chip devices is widely used for 

biomedical research and clinical diagnostics due to the advantages they offer. Lab-

on-Chips are micromechanical devices (depending on the functionality incorporated 

they are often also called Micro Total Analysis Systems – μTAS [55]), which can 

integrate one or more biological laboratory analyses on a single chip area varying 

from a few square millimeters to a few square centimeters. Lab-on-chips are not 

restricted to microfluidics but can also include droplet based systems and 

microarrays. However the basic principle is the same: a combination of miniaturized 

analytical chemistry assays, microelectromechanical systems (MEMS), which are the 

integration of mechanical and electrical elements (e.g. logical circuits, sensors, or 

actuators) and miniaturized flow control devices (e.g. channels, pumps, mixers and 

valves). 

In microfluidic LoCs (Figure 3.2), which are the devices of interest for the 

presented research, the volume of the microdevice’s channels is very small and the 

amount of necessary reagents and analytes can be maintained small as well. Lab-on-

Chips can support different phases, such as DNA extraction, DNA amplification (e.g. 
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with the use of Polymerase-Chain Reaction, PCR [56]), and hybridization detection 

targeting identification of DNA polymorphisms with specially developed biosensors 

or optical means. An overview of microfluidic systems can be found in [57]. The 

advantages of LoC devices are: 

• their small size, 

• lower cost, 

• small consumption of biological analytes,  

• increased portability and  

• ability to be integrated with other types of micro-analysis systems. 

 

 

Figure 3.1. The Lab-On-Chip working principle [58] 

LoC systems, especially disposable ones, are often controlled by off-chip 

control units, embedded in a dedicated instrument. Placing the control units off chip 

reduces substantially the cost per device. These control units receive the 

information sent both by on-chip and off-chip sensors to determine the direction of 

the flow, activate biological procedures and stop the experiment in case of an 

exception. A variety of sensors is used such as thermal, pneumatic, mechanical, 

electrical and optical [60]. 
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Figure 3.2. Simple Lab-On-Chip [59] 

The flow within such a microsystem can be continuous, flow with different 

phases, or flow with droplets of fluid within another baseline fluid. In microsystems 

featuring a continuous flow model, typical flow control mechanisms are based on 

source-sink pairs detecting the flow of different liquids through pre-selected points 

on a chip design, such as infrared sensors, light barriers or even ultra-sound 

detectors [61]. In the research project “Lab-on-Chip” of the Fund for Hellenic 

Technology Clusters in Microelectronics Framework we have experimented with an 

alternative technique based on machine vision to cover the complete microsystem at 

all times and detect different flows in different channels. This approach introduces a 

set of advantages over previous approaches, such as continuous monitoring of the 

complete microsystem, resilience to changes, since the measurement setup is not 

affected by redesigns of the microsystem, avoidance of micro-mechanical alignment 

problems in case of disposable microsystems and finally lower costs. 

Exploiting machine vision for LoC implementations requires real time 

response and precision. FPGAs have been exploited for both LoC control and 

machine vision implementations due to their high speed, ability to host systems on 

chip, low cost and small time-to-market. 

3.3. Related work 

Machine vision implementations for droplet based microfluidic chips are 

presented in [62] and [63]. These are software implementations (LabView) for 

droplet motion control where the machine vision system requirements are not as 

demanding as the proposed implementation, since they aim primarily at the 
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modeling of motion or deploy low-speed motion control of distinct objects 

(droplets). Other approaches address similar issues such as Dimalanta et al. [64] 

who describe a software approach for automatic detection and molecule analysis in 

large DNA molecule arrays. Such approaches focus mainly on the hybridization 

detection phase and usually do not cover a complete “bleed-to-read” lab-on-chip 

integrating multiple analysis phases and complex microfluidic structures. In the 

same category, Merola et al. [65] propose a digital holography method for specimen 

analysis. Batabyal et al. [66] suggest a method, which combines fluorescence 

microscopy and spectroscopy for ultra fast chemical process investigation in 

microfluidic chips. The image processing is again done by software in this approach 

and focuses on the temporal evolution of a chemical process much more than on the 

control of complex fluidic motion. Uvet et al. [67] propose a vision system for cell-

based microfluidic applications. Kornaros [68] implements on FPGA a multi-core 

soft-processor system for LoC microarrays utilizing edge detection, but once again 

focusing mainly on the hybridization detection and completely omitting the fluidic 

control aspect. The MicroBlaze multiprocessing system used has sufficient 

performance to accommodate the sobel edge detection algorithm implemented in 

this method. Sapuppo et. al. [69] present an ad-hoc optical system to detect bubbles 

in microfluidic experiments for in vivo and in vitro systems. Their presented system 

is not a hardware implementation per se, but uses the AnaFocus ACE16kv2 FPP and 

the Altera Nios II Digital Microprocessor. The system achieves real time response 

but with a lower resolution demand. Our specifications called for a complete 

hardware implementation of the machine vision system. 

The proposed Machine Vision system is an implementation of a sequence of 

appropriately adapted image processing algorithms: i) an edge detection 

implementation, ii) a bounding box detection implementation and iii) a flow 

detection module. Related work for the modules and work proposed in this thesis 

follows. 

Edge detection is the first step in many computer vision algorithms. It is used 

to identify sharp discontinuities in an image, such as changes in luminosity or in the 

intensity due to changes in scene structure. Edge detection has been researched 

extensively. A lot of edge detector algorithms have been proposed, such as Robert 
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detector, Prewitt detector, Kirsch detector, Gauss-Laplace detector and Canny 

detector. Among all the above algorithms, Canny algorithm [70] is the most widely 

used due to its good performance and its ability to extract optimally edges even in 

images that are contaminated by Gaussian noise. Canny algorithm has the ability to 

achieve a low error-rate by eliminating almost all non-edges and improving the 

localization of all identified edges. 

Because of its algorithmic efficiency and applicability many Canny 

implementations have been proposed. In [71] an implementation of a self-adapt 

threshold Canny algorithm is proposed. This design is FPGA based and intended for 

a mobile robot system. The results presented are for an Altera Cyclone FPGA and the 

highest frequency achieved is 27MHz, which result in 2.5ms computation time for a 

360 x 280 grayscale image. In [72] an industrial implementation for ceramic tiles 

defect detection is presented, which defines the hysteresis thresholds with a 

histogram subtraction method. A Canny edge detection on NVIDIA CUDA is 

presented in [73], which takes advantage of the CUDA framework to implement the 

entire Canny algorithm on a GPU. It achieves a 10.92 ms computation time for a 

1024 x 1024 image. In [74] there is an implementation of an adaptive edge-detection 

filter on an FPGA using a combination of hardware and software components 

proposed by Altera. In [75] a reconfigurable architecture and implementation of 

edge-detection using Handle-C is presented This is a pipelined design of a canny-like 

edge detection algorithm. It achieves a computation time of 4.2ms for a 256 x 256 

grayscale image. 

Center of mass implementations are common in image processing 

applications. They are mostly used as data reduction tools. Shi and Tsui in [76] 

describe an FPGA-based smart camera for gesture recognition. Center of mass 

calculations are used for feature extraction. Lu, Ren and Yu [77] use a kernel based 

center of mass for mean-shift tracking. Their implementation is of a more 

complicated function than required for the proposed machine vision in this thesis. 

Grull et al. [78] use center of mass for localization in microscopy image analysis, 

following a principle similar to ours. In [79] Curry, Morgan and Kilmartin present a 

Xilinx FPGA implementation for an object detection image classifier. In this 
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implementation the center of mass is calculated as a centroid on a Xilinx Virtex 

XCV400 FPGA. 

Center of mass calculation can be insufficient if there is noise in the sample 

that can reduce precision in the result. This is the reason why using a median 

calculation module was also explored as a solution. The median filter is a very useful 

and important tool in image processing. This filter can be used for noise reduction 

(image smoothing) as a pre-processing step in most image processing algorithms, 

having the advantage that it distinctly preserves image edges, in the same principle 

as center of mass calculation. Median calculations are also commonly used for 

localization purposes. 

The median value in a set of numbers is the numerical value separating the 

higher half of the numbers from the lower half. A median filter is a digital filtering 

technique where the incoming signal is run entry by entry, and each entry is 

replaced by the median value of its neighboring entries. The number of entries used 

to calculate the median is decided by a predefined window size. When the median 

filter is 2D the window used to define the median value is 2D as well. A common 

window size used is a 3 x 3 window. Example of such implementations on FPGAs are 

presented in [80] and [81]. In [80] a description of a generic implementation of such 

a filter is well described, while in [81] a more modern approach is presented, giving 

emphasis on the sorting algorithm used to find the median value. Fahmy, Cheunga 

and Luk present in [82] a weighted median approach optimized for an FPGA 

implementation on a Xilinx Virtex II FPGA. The same group in [83] applies the 

weighted median approach to a one-dimensional window. 

This commonly used image processing algorithms were used as an 

application field for conducting design space exploration and determining the 

appropriate level of parallelism for the proposed machine vision system. 

3.4. System Specifications 

The machine vision system used as an application example for this thesis is 

an FPGA-based flow detection system for microfluidic LoCs, designed to identify and 

monitor flows in experiments where the moving faces of the flows are always visible 
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(laminar or plug flow). The flows are two-phased (there are two visible identifiable 

liquids inside the same flow), but the liquid remains homogeneous in the channel 

and the meniscus at the start and at the end of the liquid flow is visible to the 

camera. The target is to identify and track individual flows (front tracking) on the 

microfluidic chip with a real-time response, following a high-speed camera at 60fps 

with a 1 Mpixel resolution.  

As with every implementation that requires real-time response, what 

determine the performance of the system are the given specifications. This is the 

most important factor that also defines the degree of parallelism used in the 

implementation. The detection through the proposed machine vision component 

relies both on the characteristics of the overall optical setup and the geometrical 

properties of the microsystem (Lab-On-Chip device). In the presented case 

microsystems up to 12,7 cm x 8,5 cm (standard microtiter-plate format) are used 

and the footage is captured using a 1:1.2/6mm varifocal lens at a distance of 10cm 

from the surface of the microsystem. For the capture various types of Microsystems 

were tested by Micro2Gen, both molded and micro-milled. The majority of the 

microsystems tested are based on biocompatible polymeric materials. The channels 

have different cross-sections, i.e. circular, rectangular or trapezoid. The distance 

between the two edges of the channels is 200μm (in case of circular channels this 

corresponds to the diameter, in case of rectangular channels to the sides). In this 

channel “width” the specified flow of 60μl/s corresponds to approximately 20 mm/s 

speed of the fluidic front captured by the camera. The 20 mm/s maximum speed of 

the flow defines the specifications for the flow detection implementation. 

The machine vision system is integratable in different Point-of-Care systems, 

possibly used in non-ideal laboratory conditions. Therefore, the challenge is to 

create a system that can achieve real-time response while dealing with video noise, 

non-ideal lighting conditions (positioning of light sources in a way that they either 

cause reflections or yield a low contrast between the channels and the background) 

and Lab-on-Chip displacements (rotation, translation) during the video capture, 

while being portable and easy to integrate. These demands call for a single system-

on-chip complete hardware implementation as opposed to one with multiple 

microprocessors or hardware/software co-design. This multiprocessing parallel 
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implementation was the first in the relevant literature for the specific application 

field. 

The machine vision algorithm and software model for the machine vision 

system were introduced by Μicro2gen and patented in [76] and subsequently 

implemented on hardware by Aristotle University of Thessaloniki after adaptation. 

3.5. Proposed Machine Vision System 

The goal of the proposed machine vision system is to capture the coordinates 

of the moving faces (menisci or fronts) of the flows. The experimental protocol for 

which the machine vision system was developed requires the channel to be empty 

before the liquid is inserted, therefore the face of the flow is clearly visible. In 

continuous flow systems the menisci between different fluids exhibiting different 

viscosity or color can also be easily identified, thus the system can be used for two-

phase-microfluidic experimental protocols as well. The system also differentiates 

between the starting face or the “head” of the flow, and the ending face or the “tail” 

of the flow. Up to five different concurrent flows can be identified, differentiating 

both the head and the tail of each flow. The maximum number of flows is in 

accordance with the experimental protocol specifications and was limited in order 

to make a better use of the hardware resources. The number of flows also defined 

the degree of parallelism in the implementation. However, the hardware 

implementation was designed to be generic and modular and increasing the number 

of flows is a trade-off with the implementation area and can be adapted when 

different image processing application fields are targeted. 

The machine vision system can also support user-defined points of interest 

called “alarm points”. These are coordinates preset by the user where the 

experiment reaches a decision point (resulting in a change of flow direction, 

activation/deactivation of an actuator etc.). The machine vision system checks 

whether a flow face has reached an alarm point and notifies the experiment control 

module and the user interface. 

Lab-On-Chip devices are produced by different manufacturers and have 

different characteristics. In order to allow flexibility in the use of a variety of LoC 
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devices the machine vision implementation is developed in such way that a specific 

design element (such as redundancy patterns on the chip etc.) is not a prerequisite 

for the machine vision system to work. Nevertheless, the system can only work with 

transparent microsystems, which is the majority currently. Most microsystems are 

currently manufactured on the basis of transparent polymeric materials. 

A rigid background is required during the video capture for the flow 

monitoring. However, some miniscule movements are usually present in such setups 

due to mechanical pressure from the integrated valves and the external actuators, 

which are commonly used for pumping and routing. These micro-movements need 

to be compensated by the algorithm in order to have a precise flow coordinate 

detection. 

In order to reduce the computational intensity of the flow detection 

algorithm an annotation of the LoC device is required. This procedure is done by an 

in-house developed software (developed by Micro2Gen), which allows the user to 

preset the LoC alarm points and the flows’ starting coordinates (by reference to the 

chip’s upper left corner). The flows’ starting coordinates are used to reduce 

computational requirements. This information is imported by the machine vision 

system in form of an input file. The input file also includes general information about 

the experiment execution, which is essential for the machine vision operation, such 

as video resolution and frame rate. In order to correctly interpret and use this input 

file the machine vision system must detect the LoC’s upper left corner, since all 

coordinates are in reference to this point. This is achieved by using a specially 

adapted chip frame detection algorithm. With the chip frame detection algorithm the 

machine vision system calculates the necessary reference point and at the same time 

reduces the memory accesses required for the flow detection process. This is 

achieved because in the majority of cases the LoC device doesn’t occupy the whole 

video frame and consequently by detecting the chip frame area the system only 

needs to access the memory data of interest. Bearing in mind that the system was to 

be integrated with other memory access demanding cores, such as the frame 

grabber, video compression or execution control, it was essential to reduce the 

memory accesses as much as possible. In addition, the chip frame detection 
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processing stage is run on every frame in order to recalculate the reference point if a 

LoC displacement has occurred. 

The machine vision algorithm and system architecture was optimized for 

FPGA implementation. Various techniques were used to improve the system’s 

performance, such as parallelization and pipelining, memory space cropping, 

mathematical simplifications etc. The developed system is fully parametric and 

adjustable to operate in different noise levels, with different detection sensitivity at 

the different processing steps. Threshold values at different stages of the machine 

vision system are user defined parameters and can be changed at run-time. 

3.6. Machine Vision Implementation and Design Space 

Exploration 

As described before the machine vision system is following a high-speed 

camera at 60 fps. The camera input is transformed from RGB to YCbCr color space 

from which the machine vision system requires only the luminance “Y” component. 

Therefore, the machine vision system is designed for grayscale 8 bit pixel input data. 
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Figure 3.3. Machine Vision Top Level Block Diagram 

 



 59 

Canny Edge 
Detection

Chip Frame 
Detection

Chip Memory 
Area 

Calculation

Video Frame Data(External Memory)

Input Data

Binary Edges Chip Frame 
Coordinates/
Dimensions

Box Memory 
Addresses

Chip Data Extraction

 

Figure 3.4. Machine Vision Chip Data Extraction Block Diagram 

 

Figure 3.5. Grayscale Image Framce from a Microfluidic LoC 

The proposed machine vision system depends on a chip frame detection 

stage. The chip frame detection stage is a customized version of the Hough 

transform. The Hough transform requires a binary input, produced by an edge 

detection pre-processing step. The Hough transform (chip frame detection) and the 

edge detection stage combined are the chip data extraction stage of the 

implementation (Figure 3.3 and Figure 3.4). The basic processing steps of the 
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machine vision system are: i) edge detection, ii) chip frame detection and iii) flow 

front calculation. 

An indicative image frame of a microfluidic LoC used for the proposed 

Machine Vision implementation is presented in Figure 3.5. 

3.7. Edge Detection 

The first step of the machine vision computational sequence is an edge 

detection stage. Since the proposed machine vision system will be integrated in a 

system that will not be used in ideal laboratory conditions it is essential that 

measures to cope with the noise imposed by changes in video capture environment 

are taken. The Canny Edge detection algorithm [89] was implemented, because of its 

ability to improve localization of edges even in images highly distorted by noise. 

3.7.1. Edge Detection Algorithm 

 

Figure 3.6. Canny Edge Detection Stages 

The computational stages of Canny Edge detection algorithm are presented in 

Figure 3.6. The first stage is a smoothing filter which is essential for eliminating the 

image noise. The smoothing filter used is a Gaussian Convolution Equation 3.1(1), 

and it is implemented by using a mask Equation 3.1(2) which is sled over the image 

manipulating a square of pixels at a time (Figure 3.7). In the relevant literature 

implementations with 3 x 3, 5 x 5 and 7 x 7 masks can be found. The bigger the 

dimensions of the mask are, the lower the sensitivity of the detector to noise. 
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Figure 3.7. Gaussian Smoothing Area for Pixel P(x,y) for a 5 x 5 Convolution 
Mask 
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Equation 3.2. Sobel Edge Detection 
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The second stage of the Canny algorithm is calculation of the luminosity 

gradient of the image. It is executed by a convolution with the Sobel gradient 

operators, which are a pair of 3 x 3 convolution masks Equation 3.2(3), one for the 

calculation of the gradient in the x-direction (columns) and the other for the 

calculation of the gradient in the y-direction (rows). Gradient magnitude and 

orientation is calculated by using the equations Equation 3.2(4),(5). 
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Figure 3.8. Non Maximum Suppression: P(x,y) magnitude is higher in the 
orientation of the gradient 
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Figure 3.9. Non Maximum Suppression: P(x,y) magnitude is suppressed 
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Nom maximum suppression is a procedure which improves the localization 

of the edges by suppressing the values of the pixels whose magnitude is not 

maximum on the orientation of the gradient. In Figure 3.8 the case where the 

magnitude of the calculated pixel value is higher on the orientation of the gradient 

and therefore kept can be seen. In Figure 3.9 however, the value is not the highest 

and therefore on the next computational step it is suppressed. 

Finally due to the difficulty to set a global gradient intensity threshold to pick 

the correct edges of an image only, hysteresis thresholding is used. In this procedure 

the magnitudes of the remaining edge values are compared with two threshold 

values, high threshold Thh and low threshold Thl. All pixels with values greater than 

Thh are considered to be definite edges. All pixels with values lower than Thl are 

considered non edges, and the rest are possible edges. Hysteresis is the procedure 

where all possible edges are suppressed, unless there is a definite path from this 

pixel to a pixel that is defined as a certain edge, which includes only possible and 

certain edges. In Figure 3.10 the hysteresis process is demonstrated: if value “2” is a 

“definite edge”, value “1” a “possible edge” and value “0” a “non edge” then pixel 

P(x,y) is transformed from “possible edge” to a “definite edge” because of the direct 

proximity with pixel P3. 
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Figure 3.10. Hysteresis Process 
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3.7.2. Exploration 

As part of the design space exploration process a bit-accurate simulation of 

the Canny Edge Detection process was designed in software (C code). The target was 

the generation of a simulation platform for verification of the implementation and 

parameter setting. Code::Blocks [85] open source IDE was used for the development 

and MinGW [86] compiler for compilation. 

The target was to have a bit-accurate software implementation for the 

hardware architecture as well as a software program that is easily portable to other 

platforms, such as the MicroBlaze soft-processor to be used for further research 

[87]. Therefore use of external image/video processing libraries such as OpenCV 

was avoided. Output of every computational stage of the implementation could be 

grabbed and used for comparison (Figure 3.11). According to the specifications, 8 bit 

grayscale images are used for input. 

 

Figure 3.11. Code::Blocks IDE with the Outputs of All Canny Edge Detection 
Computational Stages 

The absence of external libraries lead to the generation of structures and 

functions necessary to use .bmp files as input: 
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• sImage: struct {int rows; int cols; unsigned char* data;} sImage 

structure that stores image dimensions (columns, rows) and image 

data 

• getImageInfo: long getImageInfo(FILE*, long, int); 

function that reads the bmp file header and stores the information in 

variables 

• copyImageInfo: void copyImageInfo(FILE* inputFile, FILE* 

outputFile); 

function that copies the input header file to the output header file 

• copyColorTable: void copyColorTable(FILE* inputFile, FILE* 

outputFile, int nColors); 

function that copies the color array of the input bmp file to the output 

files 

 

In the computational stages where convolution is required a neighborhood of 

pixels must be used for calculating the value of the current pixel (8 when the mask 

size is 3 x 3, 24 when the mask size is 5 x 5 and 48 when the mask size is 7 x 7). This 

poses a problem when the currently calculated pixel is in such position on the image 

frame that a number of the required neighboring pixels are placed outside the image 

frame (non existent). There are two approaches in the relevant literature: either the 

value of the nearest pixel on the edge of the frame is used as the value of the pixels 

outside the image frame, either the pixels outside the image frame are considered to 

have value “0” (black color). For the given application using the second approach 

proved to be more efficient as the pixels near the edge of the image frame are almost 

always outside the LoC device and therefore have a very high probability to be black. 

With the use of the above simulation software thorough investigation was 

executed for the definition of the various hardware parameters. For the demands of 

the machine vision system a 5 x 5 convolution mask for Gaussian smoothing was 

chosen as sufficient, with the option of three different standard deviation values 

(minimum 1σ = , nominal 1.4σ = , maximum 2.5σ = ) for noise level adjustability. 
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Figure 3.12. Reversing Image Frame for Second Hysteresis Pass 

The original Canny Edge detection algorithm requires multiple passes of the 

Hysteresis stage until all “possible edges” are either suppressed or transformed to 

“definite edges”. This approach however poses a significant problem to a possible 

hardware implementation: execution time is completely data dependent. This would 

be unacceptable for the proposed implementation with hard real-time requirements. 

Therefore a different approach was chosen: using two hysteresis passes on a single 

frame, but the second hysteresis pass would be on a reversed order of pixels (Figure 

3.12). The double hysteresis pass approach was used in the preliminary version of 

the machine vision system [88]. 

After the completion of the first design version, exploration was executed for 

reducing used resources to allow for more space for integrating more functionality 

for the future. A critical value was the use of memory resources, since reversing the 

direction of hysteresis required buffering a whole image frame. By using a 

substantial number of input videos, an average MSE of 4.5 was calculated by 

comparing the single pass images to the double pass images. However, when the 

pixels of interest are reduced to the edges that are used in the calculation of the chip 

frame detection (the edges which result into lines near the horizontal and vertical 

axis of the frame) then the average MSE is reduced to less than 1. This value does not 

interfere with the chip frame detection stage and a single pass of the hysteresis stage 
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was deemed sufficient for satisfactory non-edge suppression. Figure 3.13 

demonstrates Canny Edge Detection results for single and double hysteresis passes 

on the upper left corner of the input frame. This region includes the application 

critical reference point. In Figure 3.13 (d), which is the absolute difference of the two 

passes, it is clearly demonstrated that the resulting images of the two different 

implementations differ mostly in pixels unrelated to the chip frame. Consequently, 

all the hardware related to the second pass was removed resulting in a lighter edge 

detection implementation. The output of the hysteresis pass is a binary image with 

well defined edges, ready to be used by the chip frame detection stage. 

 

Figure 3.13. Canny Edge Detection Results of the Upper Left Chip Corner Area 
with Single and Double Hysteresis Passes and the Absolute Difference of the 

Two (parameters: σ=1.4, High Threshold=80, Low Threshold=40) 

3.7.3. Implementation 

The given specifications for the Machine Vision response time is that it 

requires to follow a camera at 60 fps, resulting in 16.6 ms to process each 1 Mpixel 

image frame. From early estimations in the design development a computational 

time of at least 13 ms was allowed for the iterative chip frame detection 

implementation [94]. Therefore it was essential to fit the edge detection step in 2 ms 

or less. 

The performance requirements led to a 4-pixel parallel computation 

implementation with pipelining. The implemented parallelism also reduces the 

required memory accesses. The Gaussian blur stage 5 x 5 convolution requires the 

contents of a neighborhood of 25 pixels. For a 4-pixel parallel computation 25 x 4 = 
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100 pixels would be necessary. By appropriate pixel grouping (elimination of 

overlapped pixels) the number of pixels is reduced to 40, as demonstrated in [90]. 

The same principles are applied to the Sobel edge detection and Non Maximum 

Suppression stages. Both these stages require a neighborhood of 3 x 3 = 9 pixels for 

each pixel value computation. A four pixel parallel computation would require 4 x 9 

= 36 pixels, but by appropriate overlapping the pixels necessary are reduced to 18 

[90], [91]. The imposed parallelism leads to a maximum execution time of 1.3 ms for 

a 1 Mpixel image size. 

3.8. Chip Frame Detection 

One of the algorithmic innovations of the proposed machine vision system is 

the use of a Chip Frame Detection step to simplify the flow detection process (by 

detecting a set reference point) and to cope with the possible LoC displacements. 

The Chip Frame Detection identifies the smallest bounding box that encloses the LoC 

in the video frame by using an adaptation of the Hough transform, as described by 

Duda and Hart [92] and implemented by Chen et. al. [93]. The implemented version 

in the Machine Vision is based on the work of Voudouris et. al. in [94]. 

The implementation follows the parallelism decided in the Edge Detection 

stage as it is essential to keep pixel data throughput steady. The frame of the LoC 

will be a quadrilateral in the general case and what is calculated by the module is the 

least bounding rectangle. The outputs of the module are the dimensions and the 

upper left corner coordinates of this bounding box. 

3.9. Flow Identification 

The final and most important step in the machine vision system is the flow 

identification. The flow identification concept is based on a patented algorithm by 

Micro2Gen Ltd. [76]. Adaptations were made to make hardware implementation 

possible within the performance specifications. Each flow is characterized by its 

“head” and “tail”. The flow identification step detects the coordinates of either the 

head or both head and tail per flow and provides the information to the 

experiment’s control unit and user interface. In addition, points of interest called 
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“alarm points” are set by the user. When a flow’s head or tail crosses an alarm point, 

a signal is raised to inform the user along with an index indicating the particular 

alarm point. The identification of these points in a 1 Mpixel frame would be a very 

time consuming process if the whole frame data were to be examined. Most 

implementations in the relevant literature use computationally intensive image 

processing algorithms, such as connected components analysis to identify the blobs 

of the flow in the image frame. Such implementations are resource hungry and 

unsuitable for hardware implementations. Therefore, certain adaptations were 

necessary in order to minimize the computations in a limited area of interest. 

The flow identification step receives information on the coordinates of the 

upper left corner of the chip in the video frame and the size of the chip’s bounding 

box from the Chip Frame Detection stage. The experimental region of interest is 

restricted within the boundaries of this box, therefore only data within this area is 

required from the memory to detect the flows. Thus, the number of memory 

accesses necessary is reduced. The initial coordinates or points of entry (by 

reference to the chip’s upper left corner) of each flow are also provided by the 

experiment’s input file, together with the alarm points’ coordinates. Therefore the 

areas around these coordinates are defined as regions of interest, since a flow can 

only appear near these coordinates (by allowing some error margin). A detection 

“window” is defined around these coordinates which is a square within which a 

change in fluid position is expected. The size of a detection “window” is user 

adjustable with a maximum of 32 x 32 pixels. Only the area within these windows 

needs to be examined for flow detection and henceforth system performance is 

increased and area requirements are decreased. It is assumed that the flow’s tail 

doesn’t enter the chip (initial coordinate) until the head has moved at a distance at 

least equal to the window dimension in order to avoid conflicts from overlapping 

windows. Since the channels are investigated from a distance of 10 to 20 cm with a 

normal lens and have a width down to 200 μm, when a region of up to 32 x 32 is 

used, it is not expected a fluidic pluck to be smaller than this size. This detection 

window size can detect flow speed of up to 20 mm/sec in this setup. The detection 

windows are defined by the coordinates (x,y) of their upper left corner and their 

dimension (width and height). The window dimension is a function of the fluid’s 
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speed, the minimum microfluidic channel distance and the maximum channel width. 

The dimension is a user adjustable parameter, in order to achieve maximum 

precision. 

At the start of every frame the window data is loaded in two internal RAMs, 

separate for heads and tails. For flow positions near the chip edges the detection 

window is adjusted to a rectangle shape and gets cropped. The pixel data is stored to 

the internal memory and simultaneously compared to the data from the previous 

frame. The absolute difference of the two pixel values is compared to a threshold 

value, and results to a 1bit output (“active pixel”) indicating if there was a significant 

difference. In Figure 3.14 an example of data for such a detection window can be 

seen. The pixel data in d) is calculated from the absolute difference of two windows 

of the same size captured around a flow front in two subsequent frames (Figure 3.14 

b) and c)). If the total number of “active pixels” exceeds another set threshold value 

called “binary threshold” the machine vision system assumes that there was a 

change in flow position (absolute difference threshold and binary threshold are both 

user set parameters for detection sensitivity). The crescent shape of the flow front 

and the luminance changes in the flow result in a distribution of binary pixels 

around the actual flow front coordinates. Two approaches were used to identify the 

flow front position: the first one was to calculate the barycenter (center of mass) of 

the binary pixels. The barycenter cr is defined by: 

0

1

1 ,
wpNwpN −

= ⋅ ∑c ir r
 

Equation 3.3. Barycenter Calculation 

Where ir  the coordinates of each “active pixel”, 
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, Nwp the total number of active pixels and N the total number of 

pixels in the window. 
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The second approach was to calculate the median value of the active pixels 

within the detection window (3.9.2). 

 

Figure 3.14. Example Video Frame of the Machine Vision System 

If a flow movement was detected then the detection window is readjusted 

around the new coordinates. The data from the new windows are fetched and stored 

in a separate internal memory called previous frame memory. If a flow wasn’t 

detected then no data needs to be fetched. The current frame data is dropped and 

the next frame data will be compared to the data from two frames back already 

stored in the previous frame data memory. The same procedure is repeated until a 

flow movement is detected. When a flow movement is detected, the new flow 

coordinates are compared with the alarm point coordinates. If the flow is within a 

Euclidian distance approximation (a user defined parameter) of one alarm point 

then an alarm indicator is raised, together with the alarm point identification index 

number. A detailed flowchart of the operation can be found in [96]. 

Following the principle of the whole machine vision design, flow 

identification also uses a four pixel parallel computation with a fully pipelined 

implementation. 
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The experimental specifications are covered with five individual flow 

identifications (maximum possible number of flows in the microfluidic chips for the 

experimental protocol). The design however is modular, thus allowing the increase 

of flow number identification to be a trade-off with area and memory usage. 

Currently the experimental protocol doesn’t detect bubbles in the fluids. If bubbles 

are to be included in the detection protocol as separate entities then the only 

adjustment necessary is that the algorithm should anticipate more flow “heads” at 

the same coordinates after the “tail” has entered the chip, which can be easily 

implemented with an increase in the internal RAM size. Bubble formation is 

common in microfluidic microsystems and their detection may be used as a 

qualitative criterion for following microsystem design optimizations. The same 

principle could be applied to droplet based microfluidic experiments. 

3.9.1. Center of Mass Calculation Module 

 

Figure 3.15. Center of Mass Module Interface 

The center of mass calculation module is a generic module used to calculate 

the barycenter of the detected menisci of the flows. The external interface of the 

module can be seen in Figure 3.15. The module accepts the “active pixels” of the 

detection window as an input. The detection window size is generic and it is also an 

input parameter for the module. Detection window size can change on runtime. 

The output of the module is the set of coordinates for the canter of mass of 

the active pixels in the window. However, the center of mass is only calculated if the 
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number of “active pixels” in the window is above a threshold value 

(“FLOW_THRES”). This value can also change on runtime. 

The active pixels are read sequentially from the module, from the upper left 

corner of the detection window to the bottom left corner. In order to recover the 

coordinates of each active pixel a generic counter is used. In the machine vision 

implementation the pixels are read in groups of four, keeping up with the 4x 

parallelism implemented in the system. However, the degree of parallelism in the 

module is generic. There are three accumulators in the module:  

• Active Pixels Accumulator: The active pixels accumulator counts the 

total number of active pixels in the detection window. The value from 

this accumulator will be compared to the threshold value to decide 

whether there is a flow or not in the detection window. 

• X/Y Coordinates Accumulators: Each coordinate accumulator contains 

the value of the accumulated coordinates in the X and Y axis 

respectively, These values will be used for the center of mass 

calculation. 

When all the pixels from the window are read the active pixel total value 

from the Active Pixel Accumulator is compared to the threshold value. If the value is 

greater than the threshold then the center of mass must be calculated. 

The center of mass is calculated using Equation 3.3. A Xilinx Fixed Point 

Divider IP Core is used [95] to execute the division process. A Radix-2 

implementation was used with a fractional remainder. The implementation requires 

one DSP slice from the FPGA. Two divisions are required for the coordinate 

calculation, but they are executed in a pipeline from the same divider. The first 

result requires 19 clock cycles for calculation. The second result requires only one 

additional clock cycle. Both results are stored in two output registers until next 

iteration. A block diagram of the Center of Mass Calculation module is presented in 

Figure 3.16. 
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Figure 3.16. Center of Mass Module Block Diagram 

The total number of clock cycles required for the center of mass calculation is 

a function of the window size and the active pixel parallelism: 
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Equation 3.4. Centroid Calculation Module Execution cycles 

were W  and H  are the pixel width and height of the detection window respectively 

and parN the number of parallelism in the active pixel input (defined by the 

parallelism of the whole flow detection module). The 22 extra clock cycles are the 
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total number of cycles required for the divisions, the comparisons and register 

buffering. For a 32 x 32 window with 4 pixel parallelism, 278 clock cycles are 

required to calculate the center of mass coordinates. 

3.9.2. Median Calculation 

The second approach used to calculate the flow front position in the machine 

vision system is a median calculation module. The most common use of median 

calculations is in the form of an image processing filter. Another use of the median in 

image processing is to find location coordinates from a set of pixels. In this case the 

operation is relatively different than when used as a filter. In a normal median filter 

the sequence of the input data is irrelevant to the result and only the values are 

important. These values need to be shorted and the median value from the set is the 

filter output. In a median localization module the input pixels have binary values, 

discriminating from “active” (‘1’) to background (‘0’). The sequence of the incoming 

data is of outmost importance as the median of the coordinates (the input data 

index) is the actual module output. In the case of 2D median calculation the pixels 

arrive in the form of a 2D detection window. In Figure 3.17 such a window of 8 x 8 

pixel size is displayed. In this example the active pixels are the ones with the orange 

background color. In order to calculate the median coordinates the total number of 

active pixels needs to be known (11 in the example) and also the number of pixels in 

each x and y coordinate. The median coordinates are the coordinates where the total 

number of active pixels that exists up to (including) this coordinate is greater than 

or equal to half of the total active pixels. In the example the median coordinates are 

(3,2) for pixel 19. 

In the implementation used for the machine vision systems the input pixels 

arrive in batches of four pixels as streaming data for a median detection window 

with generic size and a maximum size of 32 x 32 pixels (as show in Figure 3.14. The 

median coordinates are calculated by reference to the upper left corner of each 

detection window. 
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Figure 3.17. 8 x 8 Median Detection Window 

3.9.2.1. Implementation 

As described in Section 3.9.2 the median module has three processing steps: 

a) identification of the incoming data index (coordinates), b) accumulation of the 

active pixels of each coordinate, and c) calculation of the 2D median value. 

A. Coordinates Counter 

The incoming pixel data come as a binary stream. In order to get the 

coordinates information a counter is needed which will provide the index of each 

pixel. A special double counter with user defined upper limits was designed. The two 

upper limits of the counter are the sizes of the detection window. The four pixel 

parallelism of the design dictates that the x coordinate upper limit is a multiple of 

number four. The counter for the x coordinates counts the number of four pixel 

batches on each line and when a window line is completed the y counter is increased 

by one. The counter outputs are used as inputs for the two following computational 

steps.  

B. Pixel Accumulators 

The most complicated part of the design is the pixel accumulators. In order to 

achieve a more generic and versatile design the accumulated values are stored in 

memories. Each memory address is assigned the accumulated value of one 
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coordinate. The memories used are dual port memories with a write enable and they 

are initialized by being written with ‘0’ to all addresses. 

In the case of the pixel accumulator for x coordinates (presented in Figure 

3.18) four separate dual port memories are used. Each memory has an address 

space equal to the x dimension of the detection window divided by four and a word 

size of log2(size_x) bits. The first memory is assigned the CoorX coordinates, the 

second the CoorX+1, the third the CoorX+2 and the fourth the CoorX+3. CoorX is the 

x output of the coordinates counter. This means that the next address of each 

memory is only incremented by 1 as an address, but corresponds to an 

incrementation by 4 in the actual coordinates. Each active pixel acts as a write 

enable signal for the corresponding memory. The CoorX signal arrives as a read 

address for the memories. In the next clock cycle the read address is read out from 

the memory. If the input pixel is active then the output value from the memory is 

incremented by one and in the next clock cycle is written in the same memory 

address CoorX, which now serves as a write address. The write enable signals are 

carefully synchronized with the write address by using flip flops. In this way the 

accumulator is fully pipelined. 

The operation of the pixel accumulator for y coordinates is similar (presented 

in Figure 3.19). In this case only one memory is used. The memory has an address 

space equal to the y dimension of the detection window and a word size of 

log2(size_y) bits. In this case each bunch of pixels belongs to the same y coordinate. 

Therefore the write enable signal is the OR value of all four pixels. The memory is 

read at the read address (CoorY) and the output is incremented by the sum of the 

four input pixels. In addition there is an extra register which is used to store the 

accumulated value of all active pixels. The value is necessary for the median 

calculation in the next step. 
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Figure 3.18. Pixel Accumulator for X Coordinates 

 

Figure 3.19. Pixel Accumulator for Y Coordinates 

C. Median Calculation 

When all the input pixels form the detection window are read, the median 

calculation can begin. The total number of active pixels is calculated in the previous 

step. The median coordinates are those where the accumulated number of active 

pixels up to (including) this coordinate is equal to half the total active pixels number. 
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The accumulators are read from the top left corner to the right and from top to 

bottom (starting from coordinates (0,0) and incrementing step by step). The 

coordinates counter is reset and the pixel accumulators for x and y coordinates are 

read out word by word. The outputs of each accumulator are added and stored into 

two separate registers, one for x coordinates and one for y coordinates. Each time a 

word is read out and added to the register, the register value is compared to the 

median threshold (total_active_pixels/2). If the value is greater than or equal to the 

median threshold then the current coordinate is the median coordinate. If not the 

process continues. It must be noted that the x and y median coordinates calculation 

are completely independent, therefore one coordinate is usually identified before 

the other and the two processes run without interfering. 

When the process is completed the median coordinates are sent out of the 

module with a valid signal. It is necessary to initialize the memories before another 

median calculation can begin. For this reason the coordinates counter is reset once 

more to be used for addressing so as to fill the memories with ‘0’. 

The total number of cycles necessary to complete a median calculation is data 

dependent, but the maximum number of cycles for a defined detection window size 

can be calculated. For the memory initialization the coordinates counter counts the x 

and y coordinates independently, therefore the total number of cycles required is 

the maximum value of (size_x / 4, size_y). The total number of cycles required to 

read the input data is equal to the number of four pixel bunches that arrive in the 

module (size_x * size_y) / 4. The maximum number of cycles required for the median 

calculation would be necessary if all the pixel accumulators had to be read out to 

identify the median coordinates. In this worst case scenario the maximum pixel 

cycles required are equal to the maximum dimension of the detection window. A 

total of 8 cycles must be added for reset and register synchronization purposes. 

Therefore if NCycles are the total execution cycles of the median module, the maximum 

execution cycles required are: 

max( ) 8 max( _ / 4, _ )

( _ _ ) / 4 max( _ , _ )
CyclesN size x size y

size x size y size x size y
= + +

+ ⋅ +  

Equation 3.5. Median Calculation Maximum Execution Cycles 
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It must be noted that the maximum size of the median detection window 

which can be used is defined by the maximum size of the accumulation memories. 

The implementation is fully generic for the window size as long as the x dimension is 

a multiple of four. 

D. Exploration 

The 4x parallelism of the implementation was defined by the machine vision 

system. The module is easily adjustable to a bigger parallelism in the calculations. In 

this case the maximum number of execution cycles will be: 

,max( ) 8 max( _ / , _ )

( _ _ ) / max( _ , _ )
Cycles Par par

par

N size x N size y
size x size y N size x size y

= + +

+ ⋅ +
 

Equation 3.6. Median Calculation Maximum Execution Cycles for Generic 
Parallelism 

Where parN  is the parallelism at the input. The used memory size will not 

change, what will change is the number of memory banks the memory will be 

divided for the X coordinate calculation. Instead of having four memories, parN  

memories will be implemented and the last one will be assigned to coordinate 

CoorX+ parN -1. 

3.9.2.2. Results 

The median module was implemented on the Xilinx Spartan 6 LX150T FPGA 

device used for the machine vision system. As an independent module the design 

achieved a clock frequency of 204MHz. For the implementation used in our machine 

vision application and a maximum detection window of size 32 x 32, a maximum of 

328 clock cycles is necessary to calculate the median coordinates of each flow front. 

In the machine vision implementation a clock of 170 MHz was used, which led to an 

execution time of 1.9 μsec for each detection window. 

In TABLE 3.1 the implementation results of the median module are 

presented. In the current implementation the accumulation memories were 
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implemented in distributed memory because of their small size (slices used as 

memory in the table below). In case a large detection window is used (e.g. 128 x 128 

pixels) the use of block RAMs is suggested. As can be seen the median module 

occupies a very small area. With such a small area and small execution time the 

median calculation modules can be implemented and used in parallel. 

In terms of performance improvement in the flow identification process, an 

example by using Figure 3.17 can be demonstrated. In Figure 3.17 as can be seen the 

active pixels are gathered in the upper left corner of the detection window, apart 

from a single one on the bottom right corner. In the current case of 8 x 8 detection 

window the calculation of the center of mass and median coordinates does not differ 

significantly. But if a much larger window is used (e.g. 32 x 32) then the median 

calculation is more accurate as the isolated pixels are very likely to be noise. The 

impact of such a change is especially significant in cases of fragmented flow fronts. 

In Figure 3.14 d) an example of a slightly fragmented flow front can be seen as 

captured by the implementations camera and processed by the machine vision 

system. 

TABLE 3.1. Median Module Implementation Results 

Slice Logic Utilization 
Slice Number Total Used(%) 

Registers 215 184304 ~0.1% 

LUTs 307 92152 ~0.3% 

Used as memory 20 21680 ~0.1% 

 

3.9.3. Alarm Point Detection Module 

The alarm point detection module compares the detected flow coordinates 

with a set of predefined alarm point coordinates. If the flow is within a predefined 

distance of the alarm point an alarm signal is set and the alarm point index is sent 

out. The alarm point detection module interface is presented in Figure 3.20. The 

module accepts as an input the flow coordinates, the alarm point coordinates, the 
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predefined distance that will set the alarm (“ADM”) and the alarm point index 

number. 

 

Figure 3.20. Alarm Point Detection Module Interface 

The module reads the coordinates of the flow and then compares them to the 

list of alarm points that were set before run time in the module. If the flow is within 

the ADM defined distance of the current alarm point, operation is stopped and the 

alarm signal is set. Operation resumes when the next flow is identified. The alarm 

point detection module block diagram is show below (Figure 3.21). 

 

Figure 3.21. Alarm Point Detection Module Block Diagram 
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3.10. System Core 

The system is implemented on a Xilinx Spartan 6 lx150t FPGA [97]. Special 

attention has been paid on exploiting the full potential of the FPGA resources 

available. The complexity of the complete experimental setup allows access to only a 

single port from the Multi-port Memory Controller. So as to take full advantage of 

the available port the machine vision system communicates with the external 

memory using a Video Frame Buffer Controller (VFBC) [98], which is the optimum 

setup for 2D streaming video data bursts. The memory word is set to 32 bits, which 

accommodates the 4 pixels parallelism requirements (8 bits x 4). A block diagram of 

the machine vision implementation is presented in Figure 3.22. 

 

Figure 3.22.Machine Vision Implementation 

The machine vision system is implemented in a Xilinx pcore, which is 

attached as user logic on a MicroBlaze processor via a PLB bus. The MicroBlaze acts 

as a central control module for the systems integrated on the same Spartan-6 device. 

All the user parameters (threshold values etc.) can be adjusted at runtime, thus 

making the design very versatile. The machine vision system is now integrated in 

the actual board with the complete system (system controls, bio-sensor controls, 

video compression, camera link and frame grabber) integrated as well. Therefore it 

the machine vision core as multicore implementation is also integrated into a 

complex multiprocessing system. The system achieves a maximum frequency of 173 

Mhz after integration and place and route. 
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3.11. Results 

The implementation results of the machine vision system (after place and 

route) on the Spartan-6 lx150t device are presented in TABLE 3.2. These results take 

into account the implementation of the system with the centroid calculation module 

for flow detection. However, the impact of changing the center of mass calculation 

module to the median calculation module is very small in the system area (less than 

~0.3% of the total occupied area). Additionally, while center of mass calculation 

requires a fixed number of execution cycles, median calculation is data dependent, 

and on average around the same processing time is required for 1 Mpixel video 

resolution. The most fundamental features of the FPGA fabric (flip-flops, LUTs, DSP 

slices and BRAMs) are used as metrics for size. The results are shown for each 

separate stage of the machine vision system, for the complete machine vision system 

and for the integrated system on the device. The integrated system utilizes 10% of 

the FPGAs FFs, 17% of the LUTs and 64% of the BRAMs. The 18 Kbit BRAMs are 

used as 2 KB BRAMs, leading to a memory requirement of about 86 KB for the 

machine vision system and 356 KB for the complete prototype on the device. Apart 

from the design’s internal memory requirements, an external memory space of 2 MB 

is needed to store two video frames from the frame buffer (1 MB per frame). Using 

the Xilinx XPower Analyzer [99] the power of the machine vision system was 

estimated at 0.33 W and for the integrated prototype at 0.9 W. These estimations 

were made using the worst case scenario for activity and signal toggle rates. The 

cost of the device used for development is about $240, but the design, after 

optimizations, can now be fitted to the Spartan-6 lx75 device which has enough 

BRAMs and a price of $90. 

TABLE 3.2. Machine Vision Implementation Results 

 FF LUT BRAM DSP Time (ms) 
Canny Edge Detection 7003 3053 13 - 1.55 
Chip Frame Detection 3772 7563 24 28 12.34 
Flow Detection 1581 1447 6 1 77•10-3 

Machine Vision 12356 12063 43 29 13.97 
LoC System 16094 16396 178 32 - 
FF: Flip Flops, LUT: Look-Up-Tables, BRAM: 18Kbit Block RAM blocks, DSP: 
DSP48A1 slices 
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An experimental prototype was developed to test integrated system together 

with the machine vision system. The camera used was a JAI CV-M71 CL Camlink 

Camera [100]. The set specifications for the system require real-time response for a 

1 Mpixel video frame at 60 fps. These specifications allow 16.7 ms computation time 

per frame. The prototype system is set to an operating frequency of 170 Mhz. With 

this operational frequency the system completes one frame computation of 1 Mpixel 

resolution in 13.97 ms (as presented in TABLE 3.2), which exceeds the given 

specifications. Time was calculated for five concurrent flows identification, 

maximum window detection dimensions and maximum number of alarm points. 

This performance leads to a 71.6 fps throughput for 1Mpixel resolution with the 

worst case scenario parameters chosen. Similar performance could also be achieved 

by using a GPU implementation of the algorithm. This solution was rejected, 

however, because it is not a system-on-chip solution for the complete system, it has 

great power consumption and it requires expensive hardware and a host pc to run. A 

DSP solution again does not offer SoC capabilities and devices that could possibly 

achieve acceptable performance are high end high cost. In TABLE 3.3 performances 

of different implementations can be seen in comparison to our system. As this is a 

unique machine vision implementation for continuous flow systems a 

straightforward comparison cannot be done. This is why image processing 

implementations of the algorithms used in the different stages of the machine vision 

system in different platforms have been added in order to make partial but valuable 

comparisons. 

It must be noted that the proposed design is generic and therefore a simple 

change in parameters can double the design’s parallelism thus reducing the 

execution time in half and doubling the effective frame rate of the system. 

Versatility, integration and performance were the key factors for the proposed 

system and as a result it can be safely assumed that the FPGA implementation is the 

optimum solution. 
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TABLE 3.3. Performance Comparison of Different Implementations 

Implementation Platform Algorithm 
Frame 

Resolution 
(pixels) 

Exec. Time/Frame 
(ms) 

Our Continuous Flow 
Machine Vision 

System 
Spartan 6 FPGA 

Canny Edge 
Detection  

1024x1024 

1.55 

Total:13.94 Hough Transform 12.34 
Flow 

Identification 
77•10-

3 

Sappupo et al. [69] 
AnaFocus 

ACE16kv2 FPP 
/Altera Nios II 

CNN based 
implementation 128x128 90μs 

Demiris, Blionas [76] CPU Flow Detection 640x480 more than 35ms 

Texas Inst. [101] DSP Canny Edge 
Detection 1024x1024 18.5 

Ogawa, Ito, Nakano 
[102] GPU Canny Edge 

Detection 1024x1024 444.29 

Li, Jiang, Fan [103] Virtex-5 FPGA Canny Edge 
Detection 512x512 5.24 

Khan et al. [104] DSP  Hough Transform 320x240 12 
Van Der Braak et al. 

[105] GPU Hough Transform 1920x1080 10.6 

 

In terms of quality the Chip Frame Detection stage error was calculated at 2±  

pixels for X axis and 2±  for Y axis. These error values are produced by the small 

quantization errors induced by the Chip Frame calculations. This small displacement 

of the reference point is compensated by the detection window size and the only 

influence to the performance is that for the worst case displacement the maximum 

flow speed for the first frame cannot exceed 15mm/sec, which is rarely the case. In 

the Flow Identification stage the inherent quantization error is just half a pixel due 

to the rounding used in the result of the center of mass division process. For the 

median calculation module there is no quantization error. Since the coordinates 

produced are those of the center of mass of the fluid’s movement, these coordinates 

differ slightly from the actual flow front. The difference is smaller for the median 

calculation module. This difference is directly proportional to the fluid’s speed and it 

is 8 pixels for the maximum speed (20mm/sec) for the center of mass module. The 

on-board MicroBlaze processor which controls the machine vision system 

compensates for this difference by adjusting the coordinates in both X and Y-axis in 

relation to the current flow speed. For the median calculation module the theoretical 

maximum difference of the flow front with the calculated coordinates is the same as 

with the center of mass, but the observed difference was by a factor of two smaller. 

The alarm point detection is not influenced by this process because the alarm point 
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detection distance is a user defined parameter and can be appropriately adjusted 

with regards to the fluidic speed in the experiment. This adjustment increases the 

error to 1±  pixel per axis or 2±  pixels on the plane. The detection error has been 

confirmed by observational data even on experiments where vibration was induced 

on the surface where the experimental prototype was placed. 

 

Figure 3.23. Machine Vision Prototype Setup 

The camera used has a maximum resolution 767 x 576 pixels at 60fps. In the 

experimental prototype the camera is placed at a distance of 10-15cm directly above 

the LoC (Figure 3.23). The machine vision system’s four pixel parallel computation 

design requires that the frame resolution has a number of pixels per line that is a 

multiple of four. Therefore the 767 x 576 pixel frame is transformed to a 768 x 576 

pixel frame by adding an extra black pixel at the end of each line in a DMA engine 

that controls the data from the frame grabber. With this video resolution the system 

requires less than 6ms to complete one frame computation. 

Prior to the machine vision initialization all the parameter values are loaded 

in a register file, which is accessible by the MicroBlaze processor and the Machine 

Vision system. These parameters are divided into two categories: a) those that are 

loaded only once and are stable during the experimental process (such as frame size, 
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detection window size, number of flows etc.) and b) those which are reloaded before 

every frame computation and therefore can be changed at runtime for extra 

flexibility (such as edge detection thresholds, frame detection thresholds, flow 

detection thresholds and alarm point detection error margin). 

 

Figure 3.24. Machine Vision Operation 

In Figure 3.24 a frame of the Machine Vision system operation is shown. Even 

though the camera lens imposes distortion on the chip frame shape, the Chip Frame 

Detection stage can identify the appropriate bounding box. The reference point is 

the upper left corner of the defined bounding box. The initial coordinates of the flow 

to be detected are defined by the user on the user interface. In this case the point of 

entry is defined as the exit from the input valve on the right. The initial coordinates 

are defined by reference to the upper left corner of the chip. The Machine Vision 

system defines the first flow detection window around the initial coordinates 

adjusted to the reference point calculated by the Chip Frame Detection stage. The 

snapshot chosen for demonstration is one where both the flow’s head and tail are 

within the chip frame. Flows with and without coloring agents can be identified and 

a flow without coloring agent has been used in this demonstration. 
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In Figure 3.24 b) and c) the detection window data for two consecutive 

frames for the flow’s “head” is shown. In Figure 3.24 d) the absolute difference of the 

two detection windows (with an absolute difference threshold value 40) is 

presented as a binary output. From this binary output the barycenter is calculated 

by using formula (1) (white pixels are the active pixels), thus producing the flow’s 

“head” coordinates. The same procedure is followed for the flow’s “tail”. When the 

flow reaches a predefined area around the user set alarm point, then the alarm 

signal is raised. In Figure 3.25 two captured video frames have been isolated and 

subtracted. The grayscale image difference between the two captured frames is 

presented with a magnified view of the upper left corner. It can be seen that there 

has been a displacement of the chip during the video capture due to changes in 

lighting conditions and micromovements due to external pressure on the chip, or 

even vibrations on the experimental prototype’s supporting surface. This change in 

position is compensated by recalculating the position of the chip frame in every 

single video frame. Thus, the detection window of every flow is correctly placed on 

the video frame adjusted to the reference point calculated on every frame. The Lab-

On-Chip in Figure 3.24 requires single flow identification, however, there are Labs-

On-Chip which require support for identification of multiple flows (up to five). 

 

Figure 3.25. Chip Frame Movement Example During Video Capture 
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3.12. Conclusions 

In this chapter the work on a high performance real-time machine vision 

implementation for an FPGA device is presented. The system uses a parallel 

architecture and is highly optimized. The implementation targets monitoring of 

microfluidic Lab-on-Chip experiments. This machine vision system is designed to 

follow up to five homogenous flows where the menisci of the fluids are always 

visible. The system is integrated with a video frame grabber, a video compression 

unit, bio-sensor control units and system control units on a Spartan-6 lx150t device. 

This device will be part of a complete Point-of-Care system, which will be portable 

and able to operate in non-ideal laboratory conditions. The given specifications 

require a real-time response for 1Mpixel input video resolution at 60 fps. 

The machine vision system can compensate for changes in lighting conditions 

and even small LoC displacements by using an innovative Chip Frame Detection 

module that identifies the bounding box of the LoC on each video frame and 

subsequently calculating the flow coordinates with respect to the bounding box’s 

upper left corner. The architecture exploits parallelism in every processing step. 

For this machine vision system a design space exploration was executed to 

define the specifications and the characteristics of the whole architecture and in 

particular of the edge detection preprocessing step. Specific high performance 

modules were developed for center of mass calculation to define the flow front 

coordinates, as well an application specific alarm point detection module. Both these 

modules use generic design parameters to be easily adaptable to new specification 

and different application field. The exploit a 4x parallelism like the machine vision 

system, but the parallelism level can be adjusted. 

In addition a median FPGA implementation is presented as an improvement 

for the center of mass module. The module is designed for localization purposes and 

it is used to identify the median coordinates of the flow fronts. It is a fully pipelined 

implementation, exploiting the parallelization capabilities offered by the FPGA 

devices. The module can use a detection window of generic size and in order to 

achieve the median calculation two unique coordinate accumulators were designed. 

The module is lightweight in both area and execution time, needing only a maximum 
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of 328 clock cycles to achieve a median calculation for a 32 x 32 pixel window. On a 

Xilinx Spartan 6 LX150T FPGA it achieved a clock frequency of 204MHz. 

The system implementation performance is presented and compared with 

previous machine vision implementations on various platforms. Ours achieves 

significantly faster performance while the competition is slower and uses much 

lower resolutions for reference. 

Future work will include the adaptation of the center of mass and median 

calculation modules for use in different image processing applications, such as the 

one presented in Chapter 4. Additionally, different approaches for microfluidic flow 

detection can be explored, such as the use of hardware implementations of 

segmentation algorithms or 2D clustering algorithms. Exploration can be executed 

for adjusting the machine vision system to different types of LoC devices and 

experimental protocols, such as droplet based experiments, microarray LoCs and 

others. 
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Chapter 4 

High Performance MPSoC for High 
Data Throughput Applications 

4.1. Introduction 

Modern detector technology has advanced substantially in the recent years 

providing detectors with a very high resolution and flexibility. Thus they can be used 

in various highly demanding application domains. High resolution pixel detectors 

are used in a vast variety of applications from simple every day use to the 

demanding high energy physics, astrophysics, security and biomedical applications. 

The majority of these applications call for real-time data capture at high input rates.  

For most of these applications complex image processing algorithms are used 

to process the captured data. Therefore, the demand for effective data reduction 

techniques is prominent. Data reduction techniques commonly used in this kind of 

applications are edge detection and data clustering. A design space exploration for 

the implementation of such algorithms is essential to achieve the optimum 

implementation for each different application case. The edge detection approach to 

data reduction was introduced in Chapter 3. Here, the clustering approach is 

examined as a commonly used algorithm to group two dimensional (2D) data (such 

as pixels) into clusters, thus minimizing the information of the data group to a single 

data word information for each cluster. 



 94 

4.1.1. Thesis Contribution 

To tackle the demanding data reduction problem for 2D images a novel pixel 

clustering implementation was developed. The presented implementation uses a 

moving window technique which is common to many image processing algorithms 

but unique to clustering implementations of this kind. The target was to design an 

efficient and robust high performance implementation that is generic enough to be 

used in different image processing applications. The 2D pixel clustering 

implementation was used as a platform to explore the design space for high data 

throughput streaming applications.  

The generic characteristics of the design allowed for multiple parallelism 

were the number of working parallel engines can change by means of a simple 

variable number. The design exploits data and task level parallelism where possible 

and also pipelining where necessary. 

The implementation was originally developed for the Fast TracKer Processor 

for the ATLAS detector in CERN but it can be easily adapted to be used in various 

different image processing applications. 

The results of this thesis have been published in IEEE Transactions on 

Nuclear Science [106], and were presented in seven conferences ([107]-[113]) 

where they were included in the proceedings. Additionally, this work has been 

presented in the International Conference on Technology and Instrumentation in 

Particle Physics (TIPP 2014), where it received the award for best presentation (first 

prize) by a young researcher. More recently the work has been presented in the 

IEEE NSS/MIC conference (November 2014). Additionally, the research on this 

specific task led to the qualification of the researcher as an ATLAS author. 

4.2. Related Work 

The need for defining, determining and extracting meaningful information 

from large amounts of data is not restricted to image processing, but expands in 

several different and more general disciplines, such as science, engineering, 

economic studies etc. The principle behind clustering is to divide data into large 
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groups and to extract common features from each group. These common features 

are the useful extracted information. 

Several clustering algorithms exist in the bibliography. A review of most 

clustering algorithms is presented in [114] by Casagrande et al. They are iterative 

algorithms where data are clustered with respect to an objective function. These 

algorithms are suitable for data mining and statistics use but they are too 

complicated to be implemented in hardware for high data throughput applications 

and thus unsuitable for hardware design space exploration. Hussain [121] presents 

a K-means clustering FPGA implementation that requires 0.723 ms to group a 2905 

point data set to 8 clusters. Shanthi [122] demonstrates an FPGA implementation of 

a histogram based clustering algorithm. This implementation executes segmentation 

of a 512 x 512 pixel input in a few seconds. FPGAs have been also used as hardware 

accelerators for image segmentation process executed by a CPU, such as in [123], 

where the FPGA is only used to speed-up specific mathematic functions. In [124] an 

image segmentation approach using logarithmic arithmetic is again implemented on 

an FPGA device, but the performance results are inconclusive because of lack of 

available FPGA area for the complete system. Yamaoka et al. [125] present a pattern 

matching implementation architecture on an FPGA for input images of 80 x 60 

pixels. The implementation uses an image segmentation cell-network for a region-

growing algorithm. The principle behind this network has similar characteristics 

with our approach to use a cluster identification window (grid). However, the cell-

network in [125] is used only to extract the size of a previously identified cluster, 

while in our implementation it is used to detect the cluster itself by identifying the 

directly neighboring pixels. This leads to a much more efficient use of the grid 

structure. All the above algorithmic implementations target unprocessed data with 

common properties and have a low throughput because of iterative data processing. 

In the High Energy Physics application domain, clustering is used to do a first level 

data filtering such as in [126]. Gregerson et al. use two 2 x 2 clusters on adjacent 

towers from the cylindrical CMS detector to identify energy patterns that exceed a 

desired energy threshold on the CMS calorimeter. The pixels are not zero-

suppressed and the cluster size and shape is fixed. Pattern matching is executed on 

the deposited energy values. 
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The clustering algorithm and implementation in this work targets data with 

direct proximity (neighboring pixels) that are pre-processed and zero-suppressed. 

The data source is a pixel module with a size of 144 x 328 pixels on which in worst 

case conditions about 0.4 % of the pixels will pass the signal-to-noise threshold 

[132] (very low occupancy). After zero-suppression a single “pixel module image” 

from one pixel module is significantly compressed. Thanks to the reduced size, each 

input link will deliver “pixel module images” at rate of 1-2 MHz. Our implementation 

performs clustering at full speed processing all input data on the fly. These specific 

characteristics of the implementation do not allow direct comparison with the 

previously described FPGA image segmentation approaches. In [127] however, 

Wassatsch and Richter present a universal clustering engine with similar 

requirements for the Belle II experiment. In this approach the whole pixel frame has 

to be read before the clusters can be identified, which imposes a significant 

algorithmic delay. From the imposed delay derives a hard requirement for a 400 

MHz clock that required the implementation of the algorithm on ASIC technology 

(TSMC 65 nm). A direct area comparison cannot be made between [127] and our 

proposed implementation, but an estimated 1000000 logic gates are needed for the 

DCE3 implementation, while around 15000 logic cells are used in our design on a 

Spartan-6 lx150t FPGA device. The small area occupation on the FPGA allows the 

flexibility to implement different algorithms on the same device, in addition to the 

reduced cost and development time for an FPGA implementation instead of an ASIC. 

Our implementation uses an innovative moving window approach to reduce 

the FPGA resources required for the cluster identification process. It is an evolution 

of a sliding clustering algorithm [115]. This algorithm had a much higher cost in 

FPGA resources because it required a window as large as the module width, which is 

typically much larger than the maximum cluster size. The larger window size 

resulted in increased combinatorial logic that led to lower speed performance and 

significantly greater FPGA resources occupation. The proposed detection technique 

uses a smaller window, whose size is required to be comparable to the maximum 

expected cluster size. The size is adjustable to target specific maximum cluster size. 

Advanced control logic is required for the proper operation of the smaller window 

size, while the algorithm [115] uses simple control logic. The current 
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implementation introduces parallelization with a generic number of clustering 

engines instantiated in the design to increase overall performance. The result of the 

more sophisticated logic of the current design is that the incoming hits can be 

clustered at a much higher rate with the same use of FPGA resources. 

4.3. Background Information 

The clustering implementation presented here is part of the Fast TracKer 

processor (FTK) [128]. FTK is an approved ATLAS [129] upgrade. A brief 

introduction to ATLAS, FTK and the ATLAS Pixel Detector follows, to put the 2D Pixel 

Clustering implementation into context. 

4.3.1. The ATLAS Detector 

ATLAS (A Toroidal LHC Apparatus) is one of the seven particle detector 

experiments (ALICE, ATLAS, CMS, TOTEM, LHCb, LHCf and MoEDAL) constructed at 

the Large Hadron Collider (LHC), a particle accelerator at CERN. The experiment is 

designed to take advantage of the unprecedented energy available at the LHC and to 

observe phenomena that involve highly massive particles that were not observable 

using earlier lower-energy accelerators (such as LEP and Tevatron).  

Inside the LHC and after the next two upgrades, bunches of up to 1011 

protons (p) will collide 40 million times per second with the resulting collisions 

having energy up to 14 tera electron Volts (TeV). ATLAS is a detector designed to 

probe such collisions. The detector itself is 44 meters long, 25 meters in diameter, 

weighs approximately 7000 tones and contains nearly 3000 km of cable.  
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Figure 4.1. The ATLAS Detector 

The ATLAS detector is barrel shaped and it is nominally forward-backward 

symmetric with respect to the interaction point (where the proton beams from the 

LHC collide). It consists of a series of concentric cylinders with increasing size and 

can be divided into four major parts (Figure 4.1): the Inner Detector, the 

calorimeters, the Muon Spectrometer and the magnet systems. Each of these parts is 

also made of multiple layers. These detectors are complementary: the Inner Detector 

tracks particles (the particle paths as they cross the detector’s different layers), the 

calorimeters measure the deposited energy of particles on the detector, and the 

muon system makes measurements of highly penetrating muons. The two magnet 

systems bend the trajectory of charged particles in the Inner Detector and the Muon 

Spectrometer, allowing for momentum measurements. One event acquired by the 

ATLAS experiment consists of data from 100 million detector elements, which leads 

to about 1.6 MB of data after zero-suppression. There are 40 million beam crossings 

per second (40 MHz) and the amount of data produced reaches a total of 1 petabyte 

of data per second. It is therefore essential to have a fast and efficient data selection 

and reduction system to process fast events that are of real interest for new physics 

and physics analysis. 
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Figure 4.2. The ATLAS Detector Data Flow and HLT System 

In order for the ATLAS experiment to reduce the event rate to the level at 

which only interesting events will be fully reconstructed, a three-level trigger 

system (Figure 4.2, [130]) has been deployed. The triggers use simple information to 

identify, in real time, the events that are most interesting and need to be retained for 

further analysis. The level 1 trigger (L1) reduces the rate of events to 100 kHz using 

custom, pipelined electronics and identifies Regions of Interest (RoI) worthy of 

further study in the trigger. The Region of Interest Builder (RoIB) delivers the RoI 

records to the level 2 trigger (L2) which runs selection algorithms on a farm of 

commodity processors to further reduce the rate to approximately 4.5 kHz. Finally 

the Event Filter (EF) reduces the rate to approximately 400 Hz for permanent 
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storage. The time budget for processing events at L2, and the EF is approximately 40 

ms and approximately 1 s respectively. In L2 and EF track reconstruction is 

performed to execute the selection. Due to the time constraints (less time available) 

the L2 track reconstruction is much less detailed in comparison to the one executed 

by EF. For the next run starting in 2015 L2 and EF will be merged in a single High 

Lever Trigger (HLT). 

The data are then stored in mass storage centers for offline processing and 

scientific analysis at a later stage. 

4.3.2. The ATLAS Pixel Detector 

The ATLAS Inner Detector is the detector part closest to the particle beam 

and the collision point (Figure 4.3). The Inner Detector consists of three different 

Silicon Detectors (SCT, Pixel and IBL) and a Xenon gas detector (TRT). The Pixel 

Detector is the first detector the particles cross in the radius of the ATLAS cross 

section (Figure 4.4). 

The Pixel Detector [132] is again barrel shaped and consists of 3 cylindrical 

layers and the 3 endcaps (disks). The layers have average radii of 5 cm, 9 cm and 12 

cm, and the endcaps 9 cm and 15 cm. The cylindrical layers of the detector consist of 

1456 pixel modules while the 3 endcaps of 288. Each module (Figure 4.5) is 62.44 

mm x 21.4 mm with 144 x 328 pixel elements each. There are 80 million pixels in 

total that cover an era of 1.7 m2. The pixels of each pixel module are read out by 16 

Front End chips (FEs). Each FE serves an array of 18 x 160 pixels. Most of the pixels 

have a size of 400 μm x 50 μm, but the pixels at the edges of the FEs (column 0 and 

column 17 of each FE) have a larger size of 600 μm x 50 μm. The innermost layer of 

the Pixel Detector is called B-Layer (layer 0), and the other two are Layer 1 and 

Layer 2. The Pixel Detector module data are read out by the Read Out Drivers 

(RODs) by using S-LINKs [131] running at 2.0 Gb/s.  
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Figure 4.3. Crossing of the ATLAS Inner Detector by a High Energy Particle with 
Dimensions 

 

Figure 4.4. Tha ATLAS Pixel Detector 3D Model 

In the current ATLAS upgrade a new layer is being added inside the pixel 

detector. The Insertable B-layer (IBL [133]) has a radius of about 3.2 cm and has just 

been inserted between the existing pixel detector and a new (smaller radius) beam 

pipe. 

After each proton-proton collision a multitude of particles is generated that 

cross pixel detector layers. When a charged particle crosses a pixel it leaves a 

deposited charge on the pixel. If this charge is over a pre-defined threshold, the pixel 

is considered “hit” and the value is read out from the FEs. Taking into account the 

geometry of the detector and the nature of the collision events, it is obvious that the 

closer a layer is to the beam the greater hit occupancy per unit area it has. After the 

upgrade the IBL will be the pixel layer with the greatest hit occupancy. 
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Figure 4.5. The ATLAS Pixel Module (© SISSA Medialab Srl. CC BY-NC-SA [132]) 

4.3.3. The FTK System 

 

Figure 4.6. The Fast TracKer Processor 
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The FTK processor has the goal to provide a complete list of tracks to the 

ATLAS HLT at each Level-1 accept, up to 100 kHz, with very small latency, less than 

100 ms. To achieve the goal of providing full tracking for the whole detector, FTK 

subdivides the tasks required to perform the full tracks in consecutive steps, 

executed in pipelined sequence by custom electronic boards. 

The FTK will receive data from the pixel and microstrip detectors (the Inner 

Detector silicon layers) read out drivers (RODs) over 380 S-LINKs running at 2.0 

Gb/s, and thus the total input rate will be 760 Gb/s. Since the hits from the silicon 

detectors need to be processed by subsequent algorithms, an early reduction of data 

optimizes the FTK processing. The processing steps of the FTK processor are: 

Data formatting: The data (hits) from the silicon detector Read Out Drivers (RODs) 

are received and a data reduction is performed by implementing a clustering 

algorithm. The data are then split into 64 η−φ towers that provide the parallelism 

needed to achieve the necessary system bandwidth. There is some overlap between 

adjacent towers to avoid efficiency loss at the boundaries. These functions are 

implemented in the Data Formatter (DF) boards and the Input Mezzanine boards 

(IM). Four IM boards are connected to one DF board. 

Pattern matching: For each tower the clusters are compared with a pre-calculated 

list of about 15 million possible trajectories, using coarse hit resolution that (after 

proper analysis) has been deemed sufficient for pattern recognition. The 

comparison is performed in a few microseconds using “Associative Memory” (AM) 

chips. The AM chip is a custom designed ASIC that uses a CAM-like principle of 

operation. Pattern recognition is done using 8 out of the 12 silicon detector layers. 

Pattern matching is executed in the AM board (AMB) and the clusters are converted 

to coarse resolution data in the Auxiliary board (AUX). 

Track fitting: When 7 out of the 8 layers in the pattern have a hit then a “road” is 

identified. For each road the clusters are retrieved at full precision and candidate 

tracks are built with all possible combinations of one hit per layer. The tracks are 

fitted using a linear approximation and the ones with good quality are extrapolated 

into the remaining 4 detector layers to be refit. In this way the track quality is 

improved and the number of fake tracks is greatly reduced. The first fit is executed 
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on the AUX board and the second fit with the extrapolation process is executed on 

the Second Stage Board (SSB). 

Conversion to the HLT format: The FTK tracks are finally converted to the HLT 

format and sent to HLT by the FTK-to-Level-2 Interface Crate (FLIC). 

4.3.4. The Clustering Problem for the FTK Processor 

In Figure 4.7. a) an indicative collection of hits on an ATLAS pixel module 

area is demonstrated. The different colors represent how the hits are grouped in 

clusters. The numbers of the hits represent the sequence with which they will be 

read out from the pixel module. As mentioned before, the ATLAS pixel module is 

read out by 16 FE chips. The data from each chip are read out in column pairs. The 

data coming from the two columns are not sorted by position. In Figure 4.7. b) the 

sequence of the read out hits is shown. The colored arrows show the position of the 

hits that belong to the same cluster. It is therefore obvious that, as the hits are read 

serially to identify the different clusters it is necessary to loop over the hit list. As the 

pixel module hit occupancy increases so does the number of times the data must be 

looped in order to identify the different clusters. The target of the 2D Pixel 

Clustering implementation is to identify the 2D clusters as fast as possible, keeping 

up with the ATLAS L1 input rate. 

The 2D-clustering is implemented on the FTK Input Mezzanine cards 

(FTK_IM) which are installed on the FTK Data Formatter boards [134]. On each 

FTK_IM card there are two Xilinx Spartan-6 lx150t FPGAs [138] that receive 2 S-

LINKs each, one from a microstrip ROD [139] and one from a pixel ROD [132]. The 

latter transfers hits as 32 bit words at 40 MHz rate. Each ROD will transmit data of 

level-1 accepted events in sequence. The event data for one ROD contain the hits of 

the detector modules connected to that ROD. Clustering is executed independently 

on the data of each module. The natural data reduction replaces a cluster of 

contiguous hits with the position of the cluster centroid and the size of the cluster. 

The main challenge of the clustering implementation is to achieve the required 40 

MHz hit processing rate for each S-LINK. The implementation performance is 

evaluated by using simulated Monte Carlo data for 80 overlapping proton-proton 

collisions that correspond to the maximum LHC luminosity foreseen until 2022 
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[140]. The hard real-time requirement is achieved by a multicore parallel 

architecture which can be implemented on the available FPGA products. 

a)  

b)  

Figure 4.7. a) Indicative Collection of Hits on a Pixel Module Area, b) Indicative 
Read Out Sequence of the Hits 

4.4. The 2D Pixel Clustering Implementation 

The 2D-clustering implementation is designed to identify groups of 

contiguous pixels compatible with a cluster and then reduce the hit data to a single 

set of coordinates: the cluster centroid plus a few bits of cluster shape and size 

information. The data are received by an S-LINK decoder and are forwarded to a 

FIFO, which is the source of data for the clustering implementation. Each hit is a 32 

bit word which carries the hit coordinates (column, row) and the Time-Over-

Threshold (ToT) value that contains the deposited charge information (ATLAS Pixel 

Bytestream format, Figure 4.8). 
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Figure 4.8. The ATLAS Pixel Bytestream Format [134], [135] 

The clustering implementation is designed with a pipeline of three separate 

modules: a) the hit decoder module, b) the grid clustering module and c) the 

centroid calculation module. In Figure 4.9 the module sequence with the bus sizes is 

demonstrated. VHDL hardware description language was used for the design [20].  

 

Figure 4.9. The 2D Pixel Clustering Single Flow 
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4.4.1. Hit Decoder Module 

The input stage of the 2D-Pixel Clustering system is the hit decoder module. 

The hit decoder (Figure 4.10) transforms the incoming data from the ATLAS raw 

data format to a format useful to the following processing step. It is a pre-processing 

step that selects, formats and organizes the information that is used by the 

clustering algorithm. The ATLAS Bytestream (Figure 4.8) packages the data in two 

levels with flag words: start and end event words are the flag words that mark the 

beginning and the end of an event, module headers and module trailers are the flag 

words that mark the beginning and the end of hits from one pixel module. The 

module header word also contains the module number. The pixel hits are packaged 

between module header and module trailer. The hit decoder module is robust 

against bit errors in the input data and it is tolerant to errors in control words. In the 

rare case where an end event or a module trailer word is missing from the bytes 

stream, the hit decoder reinserts the missing word. If a more critical start event of 

module header word is missing, the hit decoder drops the hits that follow, because 

the source of these data cannot be identified. Every time such an error occurs it is 

flagged by a dedicated error bit. 

 

Figure 4.10. The Hit Decoder Module Block Diagram 

The most important role of the hit decoder module is to properly align all the 

incoming data. The ATLAS pixel module FE chips are numbered from the bottom left 

corner to the upper left corner in a clockwise cycle and they are read out in the same 

sequence (Figure 4.11). This leads to half of the pixel module data arriving in 

reverse column order than the other half. The hit decoder module needs to restore 
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the column order of the hits since the clustering algorithm is based on the 

assumption that they are ordered by increasing column number. 

To reverse the hit sequence a LIFO is used to store all the hits that arrive 

from FEs with numbers from 0 up to 7 (Figure 4.10). When a hit arrives from a FE 

chip with number from 8 up to 15 it is stored in a separate register. The value of the 

register is compared with the last value stored in the LIFO and the hit with the 

smallest column value is propagated to the next processing module. In this way 

increasing column sequence is restored. The LIFO size is 512 words which is largely 

sufficient for the expected hit occupancy in the pixel modules for up to 80 

overlapping proton-proton collisions. In the rare case that LIFO size could be 

exceeded the only effect is to split some cluster for the corresponding pixel module. 

This condition is recorded in an end-event-word error flag. Two small FIFOs (16 

words each) are added as input and output buffering stages for synchronization 

purposes. 

For different image processing applications the hit decoder module can be 

appropriately adapted or, if no data preprocessing step is required, be completely 

removed. 

 8  9 10 11 12 13 14 15 

 7  6  5  4  3  2  1 0 

Figure 4.11. The ATLAS Pixel Module FE Chip Sequence 

4.4.2. Grid Clustering Module 

The grid clustering module is the one that actually identifies the clusters and 

it is the most computationally intensive block of the implementation. The module 

uses a “moving window”, which is actually a rectangular grid of pixel cells of generic 

size. The grid takes advantage of the 2D structure of the FPGA fabric to avoid data 
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looping. The “cells” of the “window” are independent modules which change state 

from “empty”, to “hit”, to “selected” and back to “empty” depending on the current 

state of the “window” (Figure 4.12). The “window” size depends on the maximum 

expected cluster size per application and it must be big enough to fit this cluster size 

in both dimensions. The “window” is “moving” in the sense that during the several 

passes of the cluster identification process it is virtually placed on different 

coordinates on the pixel module and every time it is filled with data from different 

areas of the pixel module plane. 

At the start of a module processing the detection “window” is filled with data 

around the first received hit. This hit is used as a reference and the grid is aligned to 

have this hit placed on the middle row of either column 0 or column 1 of the 

window. The alignment column depends on whether the hit belongs to an even or 

odd column of the pixel module. This is due to the double column scrambling of the 

data from the pixel modules, to allow for one column space for preceding hits 

arriving later. In Figure 4.13 the cluster window placement is presented by using the 

same pixel module example as in the clustering problem section. It must be noted 

that the 4 x 5 grid is a small version used for representation purposes only. In a) the 

window placement for a reference hit belonging to an odd column is demonstrated 

and in b) the placement for a reference hit belonging to an even column. When a hit 

is loaded to a cell, its state changes to “hit”. 

 

Figure 4.12. The Elementary Pixel Cell 
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The hits are read from the input until the first hit with a column beyond the 

column range spanned by the “window” arrives. This hit is kept in the input FIFO to 

be processed later. All the hits that belong to the “window” are loaded to the grid, 

while the hits that do not belong to the window but are within the window column 

span, either above or below it, are stored in a separate circular buffer (Figure 4.14: 

the hits in the darker colored boxes above and below the orange/light colored 

detection window are loaded in the circular buffer). The circular buffer is a custom 

design generic size memory using BRAM FPGA primitives and with extra added 

pointer functionality to accommodate the design’s needs. 

a) b)  

Figure 4.13. Cluster “Window” Placement and Reference Hit Choice 

The cluster identification process begins by selecting two grid pixel cells as 

“seeds” on columns 0 and 1 on the middle row of the detection grid (Figure 4.15, a: 

cells marked with diagonal lines). These two coordinates are selected because either 

one of the two will definitely contain a hit (the “reference hit”). The “seed” cells that 

contain a hit when selected change their state to “selected”. The “selected” state is 

propagated on the next clock cycle to all neighboring hits (Figure 4.15, b, c: arrow 

demonstrating the propagation). On the same cycle one of the hits that were 

previously “selected” is read out (Figure 4.15, c, d: black dotted cells). When a hit is 

read out the cell returns to an “empty” state (Figure 4.15, d: cell marked with 

horizontal lines). Using the same process all the hits that form a cluster are read out 

and propagated to the next processing module in their relative coordinates with 

respect to the reference hit. In this way the coordinate bit width is reduced. After the 

cluster hits are all read out, a cluster flag word is sent to the next module which 

contains the absolute coordinates of the reference hit. The hits that remain in the 
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grid that do not belong to the identified cluster are then read out and they are saved 

in the circular buffer in their absolute coordinates. These recovered hits are not in 

column sequence with the previous hits of the circular buffer. 

 

Figure 4.14. Discrimination between hits that belong to the “window” and hits 
that do not. The hits in the darker colored boxes are loaded in the circular 

buffer. 

a) b)  

c) d)  

Figure 4.15. Cluster Read Out Process 

On the next run of the clustering module the grid is loaded with hits from the 

circular buffer (Figure 4.16). The leftmost hit stored in the circular buffer is chosen 

as a new reference hit. This hit value is stored in a separate register, called the 

“leftmost register”, as the circular buffer is being filled. While reading from the 

circular buffer to load the grid, hits that do not belong to the grid need to be saved 

3 9 7

1 13 15

4 8 6 11

12

0 1 2 3 4 5 6 7 8 9

3 9 7

1 13 15

4 8 6 11

12

0 1 2 3 4 5 6 7 8 9

3 9 7

1 13 15

4 8 6 11

12

0 1 2 3 4 5 6 7 8 9

3 9 7

1 13 15

4 8 6 11

12

0 1 2 3 4 5 6 7 8 9



 112 

again in the circular buffer. Extra functionality was added to the circular buffer to 

control simultaneous reading and writing of hits without accessing the same data 

twice. If after reading the circular buffer there are hits in the input FIFO that belong 

to the column span of the current detection “window”, these hits will be read until a 

hit with a column number beyond the last grid column arrives at the input. The 

clusters are identified using the same process of the first iteration. A clustering 

module processes all the data that belong to one pixel detector module, so the cycle 

is repeated until a pixel detector module trailer word is received from the clustering 

input and the circular buffer is empty.  

 

Figure 4.16. The Clustering Module Simplified Block Diagram 
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For the current 2D-clustering module implementation a “window” of 8 x 21 

pixels is used, 8 for the z or r direction and 21 for the r - φ (ATLAS uses a right-

handed coordinate system with its origin at the nominal interaction point (IP) in the 

centre of the detector and the z-axis along the beam pipe. The x-axis points from the 

IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical 

coordinates (r,φ) are used in the transverse plane, φ being the azimuthal angle 

around the beam pipe.). Most clusters recorded by the ATLAS pixel module (95%) fit 

within a box of 5 columns and 6 rows. The bigger grid is used to allow identification 

of the rare large clusters and clusters generated by merging hits from two or more 

clusters. Clusters bigger than the grid size, i.e. clusters extending from the reference 

hit beyond one of the grid edges, are split. Clusters that touch a grid edge are 

identified by a flag in the output, called the “split flag”. The “split flag” bit is a 

dedicated bit in the cluster flag word.  

4.4.3. Centroid Calculation Module  

The centroid calculation module is the post-processing step in the 2D-

clustering implementation that performs the data reduction process. It is the module 

where the cluster data are replaced with one set of coordinates, the centroid 

coordinates. For each cluster a centroid value is calculated. The centroid value is 

calculated as the center of each cluster’s bounding box (Figure 4.17). The pixels of 

the ATLAS pixel module have two different sizes on the x axis: the pixels at the edges 

of the FEs are 600 μm long, while all others are 400 μm long. The centroid 

calculation module corrects this difference by calculating the centroid coordinates in 

normalized units of 25 μm for the x axis and 6.25 μm for the y axis. The 

normalization factors were chosen to agree with the FTK Simulation framework and 

to allow for normalization factors that require only bitwise shifts for their 

implementation. The divisions required for the normalization process are 

implemented in a Look-Up-Table. 
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Figure 4.17. Cluster Bounding Box (with a “Universal” Pixel Size) 

The centroid is then corrected taking into account the charge deposition in 

each hit measured by the Time-over-threshold (ToT) information. This is done to 

replicate the ATLAS offline code for centroid calculation. The ToT value for each hit 

arrives in the same word as the hit coordinates and while the hits are placed in the 

detection “window” of the grid clustering module these values are stored in a 

separate memory (ToT memory) and they are recovered while the cluster hits are 

read out.  

The formulae used to calculate the centroid value for the column (x 

coordinate) value are demonstrated below:  
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Equation 4.1. Centroid Calculation with Charge Deposition Correction 

 
ColMin and ColMax in equation (1) are the minimum and maximum columns 

of the cluster. Variable a is a function of pixel position and its value is always smaller 

than the size of a pixel ([141] for more information). In equation (2) the charge 

imbalance between the two sides of the cluster is calculated (left-right for x and top-

bottom for y). qColMax is the sum of the Time-Over-Threshold values of ColMax and 

qColMin the sum of the same values for ColMin. x_average is the final centroid 

column value with the applied corrections. The same equations apply for y_average 
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by replacing columns with rows. Additional information such as cluster shape/size 

is also included in the output together with the centroid coordinates (see Figure 5.3 

in Appendix A for details). 

The post-processing step can be tailored on the application (e.g. center-of-

mass [120], median calculation [142], etc.).  

4.5. Parallel Implementation 

The target of the 2D-Pixel Clustering design is to design a flexible system that 

is suitable for the FTK processor but can be adapted to various applications with 

different processing needs. One fundamental characteristic of this 2D-clustering 

implementation is that different clustering engines can work independently and in 

parallel on data from different modules (frames), therefore increasing performance 

while exploiting more FPGA resources. It has been noted that for the FTK application 

the pixel data arrive through an S-LINK. Additionally, the Data Formatter board also 

expects data through a single data stream [134]-[134]. Serial data propagation is the 

most common data propagation method in image processing applications, to carry 

data from the detector to the processing systems. Taking into account all the above, 

choosing the appropriate parallelization strategy is critical for the implementation’s 

performance, not only for FTK but for all application fields. 

The parallelization strategy chosen for the presented implementation is to 

instantiate multiple clustering engines (grid clustering modules) that work 

independently on data from separate pixel modules (Figure 4.18). The data acquired 

by each detector module can be considered an independent image because clusters 

are entirely contained in a single module. To achieve this, data parallelizing 

(demultiplexing) and data serializing (multiplexing) logic modules are necessary. 

There are two issues that require special attention. The execution cycles required 

for the clustering identification process are strongly data dependent. This leads to 

unequal processing time per pixel module per clustering engine. Additionally, the 

recovered single data flow after the parallel processing must be in the correct event 

order (a requirement from the subsequent processing steps, in the same way video 

frames in image processing need to be processed in time incremental order). To 
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tackle these issues a special parallel data distributor module and a data merger 

module were designed.  

4.5.1. Parallel Data Distributor Module 

The pixel data arrive in a single data stream, packed by event header and 

event trailer control words. The event header at the input of the 2D clustering code 

is a single word made of the ATLAS Level 1 ID number (event number) with a 

specific start event flag. Within each event the pixel module data are packed within 

module header and module trailer control words. The processing time of one engine 

is strongly data dependent and therefore it is impossible to predict which parallel 

clustering engine will finish processing before the others. In addition, the data 

merger module must be able to restore the data stream in the received event 

sequence (pixel module order is irrelevant). The parallel data distributor module 

must propagate the event and module control words in a way such that the data 

merger can retrieve the proper order. 

Each parallel clustering engine is buffered by two FIFOs at input and output. 

This is done to facilitate the design routing and temporarily store input and output 

data while the clustering engine is busy or the data merger has put the clustering 

engine on hold. The input FIFO from each parallel clustering engine has a write data 

counter activated so that the parallel data distributor module can monitor which 

parallel engine has less data queued at the input. In the FTK version the FIFOs are 

implemented using the Xilinx LogiCORE IP FIFO Generator v9.3 [143]. As soon as the 

first event header appears at the input of the parallel data distributor it is written to 

a LVL1ID FIFO (Level 1 ID FIFO) as a reference for the received event header 

sequence (and for system monitoring purposes). The parallel data distributor 

chooses the clustering engine where the pixel hits will be propagated. On first run 

this is the engine with the smallest index number. On all subsequent runs it is the 

engine with the smallest write data counter value (clustering engine which currently 

has less data queued at input). 

To identify the smallest write data counter value a generic binary tree 

comparator was implemented. In the binary tree comparator in case more than one 

write data counter have the same value, the one with the smallest index is chosen as 
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the minimum. The use of the generic binary tree comparator allows the flexibility to 

use an arbitrary number of engines restricted only by the available FPGA resources 

and the constraint that the number of parallel engines needs to be a power of two. If 

there is a need to implement a number of engines different than a power of two the 

generic binary tree comparator can be easily replaced by a non generic comparator 

to identify the minimum value of a specific number of write data counters. 

The pixel module data are sent packed between the module header and the 

module trailer words. If there are more than one pixel module data in the event, 

another clustering engine is chosen by the binary tree comparator that will receive 

the next pixel module data. Multiple modules can be sent to each engine for each 

event. For each engine receiving at least one module, the event header is also sent 

before the first module in order to keep the event-module association. If during data 

send operation the input FIFO of the engine because almost full, backpressure is 

applied to the parallel distributor module and the data send operation is stalled until 

space if free in the input FIFO. The parallel distributor tracks all the engines that are 

active in one event by activating bit flags in a separate register. When the end event 

word arrives it is sent to all clustering engines that have processed data belonging to 

this event, to close the event for all engines. The event trailer is made by the LVL1ID 

and an event trailer specific flag bit.  

4.5.2. Data Merger Module 

The data merger module begins its operation as soon as the LVL1ID FIFO and 

one of the parallel clustering engines output FIFOs have a valid event header at the 

output. It then compares the event header with the one at the output of the LVL1ID 

FIFO and if it matches it starts reading the data. If more than one parallel engine has 

the same event header then the engine with the lowest index number is chosen (by 

using a priority encoder). After the data from one pixel module are read out, the data 

merger checks whether there are any more engines that have the same event header 

or whether a second pixel module is loaded in the same engine and if there is one it 

reads out the corresponding FIFO. While the data merger is busy reading the output 

FIFO of one parallel engine, the other parallel engines continue normal operation 

and write their outputs to the corresponding output FIFO, until this FIFO is almost 
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full. When the FIFO becomes almost full backpressure is applied to the grid 

clustering module (read out operation is stalled), until the corresponding FIFO has 

free space for data. As the backpressure is always propagated from the output of the 

system to the input (data merger to output FIFO, to grid clustering module, to input 

FIFO, to parallel distributor) it is critical that the data merger module works 

unhindered to propagate the data as fast as possible and release space in the system 

FIFOs. When all the parallel clustering engines output FIFOs that had data from the 

same event have the event trailer at the output the event trailer is read out and the 

LVL1ID FIFO is read to get the next event header and restart the event reading 

process. In the extremely rare case when no engines have the same event header as 

the LVL1ID FIFO this is declared a fatal error, it is flagged at the output error word 

and the clustering module is restarted. 

 

Figure 4.18. An Indicative 2D-Pixel Clustering Parallel Implementation with 4 
Engines 
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4.6. Functional Verification and System Design Space 

Exploration 

The 2D-Pixel Clustering system targets an application with critical data 

taking at a high speed. Unlike most image processing applications, when a 

bottleneck appears in the processing data stream, data cannot be dumped to release 

the flow (e.g. miss an image frame) and backpressure is applied from one processing 

module to the previous one until the bottleneck is resolved and all the data can be 

processed. Data can only be dumped in extreme cases of critical errors (such as 

synchronization errors in parallel data streams) when the data processing modules 

around the identified issue or the whole FTK System must be reset. In addition, the 

2D-Pixel Clustering system must be able to process without errors data arriving at 

all possible input data speeds up to the maximum (40 MHz input data clock, 100 kHz 

total event data rate). Therefore it is highly critical that each module is properly 

verified to achieve bulletproof operation at all input data rates and backpressure 

signal combinations before integration. 

The first step in achieving this is a functional verification of the VHDL code. 

As a functional verification environment ModelSim debug and analysis environment 

[144] was used. In parallel, a bit accurate software model of the 2D-Pixel Clustering 

system was developed. The bit accurate model was developed to be used for the 

verification of the FPGA firmware, as well as to be included in the FTK Emulation 

framework [134],[145]. The FTK Emulation framework is a software framework 

that described the hardware logic of the FTK Processor boards and modules to 

verify the computational load on the different components and to evaluate the 

quality of the output tracks. 

As the design is incremental and generic so was the need for the verification. 

The first step was to properly debug and verify the single engine flow, first with 

simple input data files (few clusters approximating the maximum expected hit 

occupancy in a continuous loop) and then with input files from simulated Monte 

Carlo data for 80 overlapping proton-proton collisions that correspond to the 

maximum LHC luminosity foreseen until 2022.  
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After the verification process was completed, performance estimation was 

made for the single engine flow. The information was necessary to estimate the 

number of parallel engines that would be required to process the maximum input 

data rate (40 MHz continuous data input). The information was taken by using a 

VHDL testbench which captures the time each end event word is read into the pixel 

clustering system and the time the same end event word is read out from the 

system. In this way the processing time per event can be calculated. A Monte Carlo 

file from a ZH bbνν→  event [146] was used as an input file. The results from this 

measurement can be seen in Figure 4.19. On the x-axis the number of events is 

demonstrated and on the y-axis is the event latency divided by the average number 

of event words, which produces an estimation of the system latency per input data 

word. It can be easily seen that the processing rate of the single flow pixel clustering 

engine quickly saturates to ~ 85 ns per data word. 

The input rate of the pixel clustering system is 40 MHz. At maximum 

throughput the pixel clustering system will receive one data word every 25 ns. It can 

be calculated that the ratio of processing time per data word over the input data 

time (the maximum input data rate for the single flow implementation) is 85 ns / 25 

ns = 3.4. The single flow 2D-clustering implementation is 3.4 times slower than the 

maximum input rate. Since pixel clustering is an iterating algorithm a deeper 

pipeline is not an option. Therefore a parallel implementation is essential to achieve 

the required performance. As the single flow implementation is 3.4 times slower 

than the maximum input data rate it can be anticipated that the parallel engine 

implementation must have at least 4 clustering engines working in parallel to 

achieve the required performance. 
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Figure 4.19. Single Flow Event Processing Latency 

The results obtained by the single flow tests and performance estimation lead 

to a first parallel implementation with 4 parallel clustering engines. The parallel 

version was also verified by the bit accurate simulation. The same input data files 

were used for the data comparison. The output files from the two system versions 

were identical in content. Between the two outputs only one type of difference is 

possible: a change in the sequence the pixel modules are read out. This is due to the 

operation of the Data Merger module, which can read out the pixel modules in a 

sequence different to the one written by the Parallel Distributor. However, this is 

irrelevant to the operation of the following processing board (the DF) and the FTK in 

general. Therefore it is accepted as normal operation. 

In the parallel engines enough buffering before/after each engine is needed 

to ensure that all engines can work at full speed without waiting for data from 

parallel distributor and without backpressure from data merger. In the first parallel 

version with 4 engines the minimum necessary buffering was used. FIFO size was 

chosen to be 256 words at both input and output of each pixel clustering engine. 

This size is sufficient to hold data from one pixel module at maximum occupancy 

(Figure 5.4, hits per pixel module). Using the same testbench event processing 

latency was captured with the same calculation principle. The obtained results are 
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shown in Figure 4.20. As can be seen the performance initially is better but the 

system quickly saturates to a similar event processing latency, demonstrating that 

backpressure is applied at the input of the pixel clustering system. 

 

Figure 4.20. 4 Parallel Engines Flow Processing Latency with Small Buffering 

 

Figure 4.21. 8 Parallel Engines Flow Processing Latency with Small Buffering 
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A pixel clustering system with 8 parallel engines was also implemented using 

the same size FIFOs for buffering. Using the same testbench and the same input file 

the obtained results are shown in Figure 4.21. In this diagram it is obvious that the 

event processing rate remains stable. No saturation and no backpressure at the 

input appear. 

 

Figure 4.22. 4 Parallel Engines Flow Processing Latency with Big Buffering 

The event processing latency estimations have demonstrated that 4 parallel 

engines should be sufficient to cover the 40 MHz hit input rate specifications. 

Therefore, the 4 parallel engine test war repeated with increased buffering size. The 

new buffer sizes used were 512 words for the input buffer and 1024 words for the 

output buffer of each parallel engine. This size is sufficient to store one full event of 

maximum occupancy in each parallel engine. The obtained results with the same 

testbench are shown in Figure 4.22. It can be seen that same with Figure 4.21 no 

processing rate saturation appears and no backpressure is applied at the input. The 

processing rate is stable and sufficient to cover the given specifications. 
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Figure 4.23. Performance Plot for the 2D-Pixel Clustering Implementation 

To better demonstrate the performance of the pixel clustering various 

implementations a performance plot was made using the testbench captured data 

(Figure 4.23). On the x-axis the event number is presented, while on the y-axis the 

absolute time an event exits the 2D-clustering implementation (end_event output 

time). The continuous black line is the reference line that demonstrates the 

maximum input data rate, one word every 25 ns. As it can be seen the single flow 

(dash-dot blue line) cannot follow the input rate with a much higher slope and a 

processing time of ~85 ns per data word. The 4 parallel engine flow (dashed green 

line) is almost identical to the reference line, demonstrating that it can fully respond 

to the maximum input data rate. The results for the 8 parallel engine system are 

almost identical to the 4 parallel engines with the larger FIFOs. The above 

performance results demonstrate that 4 parallel engines with big buffering are 

sufficient for the ATLAS detector pixel modules. From these 100 events a total of 

21050 clusters were identified out of 58890 data words (hits and control words). 
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4.7. Results 

The 2D-clustering implementation has been developed, verified by 

simulation and tested on multiple FTK_IM boards in both single and parallel 

versions. Implementation results are presented for both the single and parallel flow 

versions. The most fundamental features of the FPGA fabric (flip-flops, LUTs and 

BRAMs) are used as metrics for the implementation size. 

4.8. Single Flow Results 

The 2D-clustering single flow implementation (results presented in TABLE 

4.1) occupies 0.9 % of the device’s FFs, 3.4 % of the LUTs, 0.4 % of the 18 kbit 

BRAMs and 2.9 % of the 9 kbit BRAMs. The small differences between the sum of 

resources of the separate modules and the complete system are due to different 

routing choices applied by the Xilinx PAR (place and route) tool when the complete 

system is implemented. The extra 9 kbit BRAM belongs to the output FIFO 

implemented after the grid clustering module. The operational frequency is defined 

by the grid clustering module’s critical path. The centroid calculation module 

calculates the center of the cluster bounding box in normalized coordinates without 

taking into account the charge deposition. In addition to the centroid calculation 

module, an indicative implementation of a center-of-mass calculation is presented in 

[120] and of a median calculation in [142]. Both implementations are for the same 

FPGA device and have an operating frequency much higher than 81.5 MHz. The 

center-of-mass implementation uses 237 FFs and 409 LUTs while the median 

implementation uses 215 FFs and 307 LUTs for a 32 x 32 pixel detection window. 

The center-of-mass, the median calculation and the centroid calculation module 

have comparable area occupation and shorter critical path than the grid clustering 

module, therefore it can be assumed that all three can be used as a final processing 

step for the clustering implementation.  
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TABLE 4.1. 2D-Clustering Implementation Results for Single Flow 

 FF LUT 
BRAM 

(18 
kbit) 

BRAM  
(9 kbit) 

Maximum Frequency 
(MHz) 

Hit Decoder 306 486 1 3 120.0 
Grid 
Clustering 700 2257 - 2 81.5 

Centroid 
Calculation 539 492 - 2 185.0 

Total 
System 1580 3128 1 8 81.5 

FF: Flip Flops, LUT: Look-Up-Tables, BRAM: 18 kbit Block RAM and 9 kbit Block RAM 

 

4.9. Parallel Flow Results 

In 4.6 a design space exploration was described that was used to define the 

proper number of parallel engines for the specified performance requirements. Each 

version was designed and verified through the Xilinx validation chain and its 

performance was measured with post place and route simulation by using worst 

case ATLAS simulated data. The design space exploration demonstrated a strong 

correlation between the size of the output FIFOs on each clustering engine and 

system performance. This correlation was due to the backpressure applied by the 

data merger module to the clustering engines. A parallel flow version of four parallel 

clustering engines with a small output FIFO (256 words) failed to meet the 

performance specifications, while a version with eight parallel clustering engines 

and the same output FIFO size met the specifications, since the larger parallelization 

completely removed the backpressure from the data merger. However, a parallel 

version of eight engines increases significantly the amount of used resources. To 

avoid this risk a parallel flow version with four parallel engines and bigger buffering 

was implemented to completely remove the backpressure with less parallelization 

and smaller use of resources. Sufficient FIFO size was determined by testing 

measurements to be 1024 words for each clustering engine. 

This parallel flow version of four parallel clustering engines was 

implemented and measured on the FTK_IM board. In TABLE 4.2 the implementation 

results for the 4-engine parallel flow with big buffering are presented. The new 

modules that were introduced for the parallel design version, the parallel data 
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distributor, the binary tree comparator and the data merger, occupy a very small 

percentage of FPGA resources with respect to the total system. The total system 

occupies 3.1 % of the device’s FFs, 11.5 % of the LUTs, 5.6 % of the 18 kbit BRAMs 

and 3.5 % of the 9 kbit BRAMs. It can be seen that the number of BRAMs that are 

required for the implementation with the four parallel engines is greater than the 

number required for the single flow when multiplied by four because of the extra 

required buffering at the input and at the output of each parallel clustering engine 

(FIFOs before and big FIFOs after Grid Clustering modules in Figure 4.23). 

TABLE 4.2. 2D-Clustering Implementation Results for 4-Engine Parallel Flow 

 FF LUT BRAM (18 
kbit) 

BRAM 
(9 kbit) 

Maximum 
Frequency 

(MHz) 
Parallel Data 
Distributor 51 79 - - 270.0 

Binary Tree 
Comparator 84 51 - - 334.8 

Data Merger 70 113 - - 247.5 
Total System 5739 10583   15 21 80.5 
FF: Flip Flops, LUT: Look-Up-Tables, BRAM: Block RAMs 

 

The clock performance is again defined by the grid clustering module and the 

maximum frequency drops a little due to routing to 80.5 MHz. The 4-engine parallel 

clustering flow has been tested on the FTK_IM board. The board test was executed 

with the same clock configuration as with the single flow, 40 MHz clock for the input 

FIFO and 80 MHz for the rest of the implementation. By using the same input data as 

with the single flow clustering implementation a worst case of ~ 25 ns processing 

time per data word was estimated. This performance covers the given specifications 

of maximum input data rate of 40 MHz.  

A parallel version with 16 engines was also integrated for potential more 

computationally demanding applications (such as the Insertable B-Layer ). The 

implementation results for the parallel 2D-clustering version with 16 clustering 

engines are presented in TABLE 4.3. This system version is implemented with 

output FIFOs of 128 words as the buffering requirements will be recalculated after 

extensive testing with IBL data. The implementation uses 9.5 % of the device’s FFs, 

38.8 % of the device’s LUTs, 6.3 % of the 18 kbit BRAMs and 16.4 % of the 9 kbit 

BRAMs. As this implementation uses a significant percentage of the FPGA device 
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resources and has modules with a 16 times bus fan out, it is important to keep the 

critical path buffered in order to avoid performance degradation. The initial 

implementation achieved a clock frequency of 79 MHz for the grid clustering 

modules. Additional constraints and optimizations in the place and route options 

allowed for the use of the same 80 MHz clock in the 16 engine implementation. 

TABLE 4.3. 2D-Clustering Implementation Results for 16-Engine Parallel Flow 

Slice Type Used Slices Total Slices Used 
Slices(%) 

FFs 17558 184304 9.5 
LUTs 35724 92152 38.8 
BRAMs (18 kbit) 17 268 6.3 
BRAMs (9 kbit) 88 536 16.4 
FF: Flip Flops, LUT: Look-Up-Tables, BRAM: Block RAMs  

 

4.10. Comparison with previous clustering approach 

The current implementation is an evolution of a sliding clustering algorithm 

that had a much higher cost in terms of FPGA resources [115]. In the sliding 

clustering algorithm grids of 4 x 168 and 8 x 328 pixels were used. The grid 

clustering module of the old sliding algorithm version has been re-implemented on a 

Spartan-6 LX150T device for direct comparison with the current implementation. 

The extrapolated FPGA resources and clock frequency results are presented in 

TABLE 4.4. It must be noted that the maximum frequency is directly related to the 

number of cells of the detection window. As it can be seen the sliding version of the 

algorithm occupies a significantly larger number of FPGA resources (9.8 % LUTs for 

the 4 x 168 and 38.2 % for the 8 x 328 versions). For the 4 x 168 version, which is a 

compromise between the window size and the fraction of split clusters leading to 

more than 10% of clusters flagged as split, an average of 3 clocks per incoming hit 

were required. In order to achieve 40 MHz hit processing rate about 9 parallel cores 

would have been required, reaching a very crowded design with almost 90 % LUTs 

usage on the Spartan-6 LX150T device. For comparison the current implementation 

occupies a factor of 8 less LUTs for even slightly better processing rate. The option 

that would reduce the fraction of split clusters for the algorithm in [115] is the use of 

the ideal 8 x 328 window size. This version would match the pixel module width as 
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well as the number of columns (8) in our implementation, but it would require a 

factor of 64 more LUTs than the presented implementation, as it can be derived from 

Table IV. 

TABLE 4.4. Extrapolated Results For Sliding Clustering Algorithm 

Grid Size FFs LUTs Maximum Frequency (MHz) 
8 x 21 (current) 700 2257 81.5 
4 x 168 2800 9028 14.4 
8 x 328 10933 35252 7.4 
FF: Flip Flops, LUT: Look-Up-Tables 

 

4.11. Statistics 

The outputs of the 2D-clustering implementations have been verified by a bit-

accurate simulation model. Using the same model as well as the outputs of the FPGA 

firmware statistics for the 2D-clustering performance were gathered. The most 

important aspect of these statistics is the percentage of the identified clusters that 

have an active “split flag” with the current 8 x 21 pixel detection window 

specifications. The “split flag” is active whenever a cluster touches the grid 

(detection window) edge. This is an indication, but not a confirmation, that the 

cluster might be split. It was estimated that at most ~1.5 % of all clusters will be 

flagged as split (Figure 5.5 in the Appendix shows the cluster bounding box sizes 

that appear in events with 80 overlapping proton-proton collisions). Not all clusters 

with the “split flag” are actually split. It is possible to reduce the fraction of split 

clusters using a larger pixel clustering grid. For example a 12 x 31 grid would reduce 

the fraction of potentially split clusters to ~0.4 %. The proposed design is totally 

generic, therefore adjusting the size is easily achievable. An implementation with 

this larger grid was realized. The FPGA maximum clock speed is reduced to 65 MHz. 

(along with the fact that the number of cycles required to process a hit increases to 

4.7 – by reference to the 40 MHz input clock). This means that 8 engines can fit on 

the Spatan-6 and process pixel data at full input speed, by occupying 43 % FPGA 

resources (LUTs). We have chosen the 8 x 21 grid size, which doesn’t split any 

cluster of size up to 7x11, since larger clusters are not of interest. They originate 

mostly from tracks that are not from beam collision or from low transverse 
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momentum particles [141] that are not reconstructed by the FTK. Furthermore, 

what matters more is the fraction of split clusters for tracks with transverse 

momentum above 1 GeV/s. The effect on tracking performance is under study. 

4.12. Hardware Tests 

The firmware has been tested extensively on FTK_IM cards (Figure 4.24) at 

Lab4-CERN. The testing configuration is as follows: 

A QUEST computer is used as a data source. A QUEST is an ATLAS ROBIN 

card configured as a data source [147]. Gigabit fibers are connected from the QUEST 

to the FTK_IM cards. The FTK_IM cards are mounted on the DF board which is 

placed in an ATCA crate [148]. The Data Formatter board is acting as a pass through. 

The same QUEST computer is also used as a data sink with another ATLAS ROBIN 

card being configured as a FILAR [149] (data receiver). 

For the board test a 40 MHz clock was used for the input FIFO of the hit 

decoder (input interface) and a 80 MHz clock for the rest of the implementation. In 

all the tests the output results have been confirmed by comparison with the bit-

accurate simulation. 

Input files from Monte Carlo simulations of 80 overlapping proton-proton 

collisions were used as test data. A number of monitoring registers were added to 

the VHDL wrapper of the design (Appendix B, 5.2) for continuously monitoring the 

status of the hardware. These registers include the status of all Finite State Machines 

of the design, the status of all FIFOs, data validation signals, and data words from 

critical points in the hardware data path (such as data parallelizing and data 

merging points). 
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Figure 4.24. The FTK_IM card 

 

Figure 4.25. The Data Formatter Board with Four Mounted FTK_IM Cards 

 

Figure 4.26. Testing Configuration at Lab4-CERN 
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In addition a special LVL1ID monitoring module was designed. The LVL1ID 

monitoring module continuously monitors the LVL1IDs processed by the Pixel 

Clustering system. LVL1IDs from ATLAS come in sequence increasing by a value of 1, 

apart from special counter reset cases. The module checks whether the current 

LVL1ID has a valid value in comparison to the previous one. If the value is invalid a 

special error flag is raised. The LVL1ID monitoring module will be used to identify 

possible problems in the data flow of the system. 

All monitoring registers for the status of the FTK_IM are accessed externally 

through I2C protocol and monitoring software (called SpyMon). A screenshot of the 

SpyMon software is presented in Figure 5.8. FTK_IM was tested with data of 80 

overlapping proton-proton collisions in continuous loop and input data rate of 40 

MHz (100 kHz event rate) without errors for more than 14 hours (overnight tests) 

and no backpressure applied from the hardware (no processing speed bottlenecks 

were initiated by the firmware). 

4.13. Future Developments 

The FTK_IM board and firmware has been reviewed by CERN electronics 

department and is currently in mass production. The system is being integrated in 

the Fast TracKer Processor with more complicated data flow tests being run on 

continuous basis as more boards from the complete system are being integrated in 

the flow. 

A faster processing version of the 2D-Pixel Clustering system will be designed 

for the IBL. The IBL Modules consist of one or two front end chips (FEs), each one 

with 80 columns and 336 rows of pixels. Data from each FE arrive half in increasing 

column order and half in reverse column order. Additionally hits arrive packed in 

two different levels of compression. One hit word can contain data from two pixel 

hits, and 5 hit words can be packed in 4 data words. This results in a maximum input 

rate of 100 MHz (with an actual average of 70-80 MHz). To cope with these new 

specifications the hit decoder must be redesigned, the number of parallel engines 

must be increased and the centroid calculation module must be adapted to the 

geometry of the new layer. 
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A preliminary (pass through) version of the new hit decoder has been used in 

behavioral simulations to estimate the required number of parallel clustering 

engines for the 2D-Pixel Clustering implementation by using event files of 80 

overlapping proton-proton collisions on the IBL. Current estimation demonstrate 

that 16 engines are sufficient to cover the new specifications, with area occupation 

demonstrated in TABLE 4.3. 

Additionally, an FTK_IM prototype board with two Artix-7 XC7A200T FPGA 

devices [150] is currently being constructed. In the future the current firmware will 

be ported in the new devices to allow for better performance while occupying less 

FPGA resources. The available resourced can be used for more complicated post-

clustering processing modules to better approximate the ATLAS offline processing 

software calculations. One option for such a processing module is the use of a neural 

network [151]. 

4.14. Conclusions 

A multi-core FPGA-based 2D-pixel clustering implementation was developed 

for the Fast TracKer Processor in the ATLAS experiment. The implementation is 

designed to be fully generic in bus sizes, memory sizes and number of parallel 

engines used, therefore it is easily adjustable to various image processing 

application that require 2D pixel clustering. Each parallel engine can work 

independently on different pixel modules. The implementation uses a moving 

window technique to reduce the FPGA resources required for the cluster 

identification process.  

A design space exploration was executed to identify the bottlenecks in the 

parallel data processing implementations. The number of clock cycles required per 

cluster identification is strongly data related and therefore use of Monte Carlo data 

was required to assess the performance of the design. A strong correlation between 

the size of buffering used before and after each clustering engine was identified and 

the buffering sizes were fine-tuned to fit the FTK specifications. 
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Additionally monitoring modules were developed and monitoring tools were 

used at the critical data path points to remove all possible processing bottlenecks 

and ensure unhindered data flow. 

The specifications for the Fast TracKer were to process data at an input rate 

of 40 MHz (100 kHz event rate). Previous clustering implementations would require 

more than eight times the resources to achieve similar computational performance. 

These specifications were covered by a 4 parallel engine version of the design. The 

2D-Pixel Clustering is integrated in the Fast TracKer Processor and the FTK_IM 

board as well as its firmware have been reviewed by CERN electronics department. 

The versatility of the design allows for future exploration of its adaptation to 

different application field, by changing the number of clustering engines, the various 

parameters of the design as well as the post-clustering processing step. 

 



 135 

Chapter 5 

Conclusions 

5.1. Review 

This dissertation describes the work of the researcher on multiprocessing 

system development for implementation of applications. This work is divided into 

two major parts: the model formulation part and the implementation part. 

The model formulation derives from the need to optimize heterogeneous 

MPSoC systems according to various applications’ needs and based on different 

hardware platforms. With the new available technologies especially on 

reconfigurable platforms (FPGAs) the number and complexity of parameters has 

increased so significantly that the impact on design development time is reducing 

the time to market advantage of reconfigurable platforms over ASIC technology. In 

this thesis a hands on example of the design flexibility offered by MPSoCs 

implemented on reconfigurable platforms is presented with a complex design space 

exploration to study the impact of data/task level parallelism and different memory 

architectures on the sytem performance and resource usage. A new parameter 

called Hardware Efficiency is introduced to correlate performance with increase in 

area (hardware resources). With this parameter we quantify how “efficiently” the 

hardware resources are used. 
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An Integer Linear Programming model is formulated to solve the above 

problem. This model can be used as an optimization tool by the designers early in 

the design development process. The model includes parameters not only for 

performance and resource usage, but for memory usage as well, which to the best of 

our knowledge was a first for ILP formulations of this kind. The model can be used 

for optimizing the system based on a variety of objective functions for area, 

performance and memory, as well as combination of the above with varying 

importance weights. 

The model was also extended to include early power and temperature 

estimation for each processing unit of a hybrid FPGA MPSoC, as well as the mean 

device temperature at regular time intervals. With this extension a complete 

formulation is offered where the optimization parameters can be all the major 

MPSoC characteristics: performance, area, memory usage, power/temperature. 

In the implementation part two major applications are used as working 

examples of high performance MPSoC. The first one is a complex machine vision 

system for real-time flow detection on microfluidic LoC devices. The machine vision 

system is integrated in a Point-of-Care system with sensors, actuators and 

microcontrollers. The machine vision architecture is parallel and optimized to 

achieve the required performance of 60 fps following a camera with 1 Mpixel 

resolution. 

The required parallelism to achieve the performance specifications was 

explored and a bit accurate simulation for the edge detection preprocessing step 

was developed. The simulation was used to define the precision of the implemented 

algorithm as well as hardware verification. Advanced generic modules for center of 

mass, median calculation and an application specific alarm point module were 

developed for the machine vision system. These modules follow the parallelism of 

the system but are generic and therefore the parallelism and performance of each 

module can be appropriately adapted. The machine vision system was integrated in 

a working prototype to demonstrate proof of concept. Comparisons with equivalent 

machine vision systems on various platforms prove that the presented 

implementation is significantly faster for equivalent or bigger video resolutions. 
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The second application was a 2D pixel clustering implementation for 

streaming data. The implementation was originally developed for the ATLAS Fast 

TracKer processor as an addition to the ATLAS Trigger system but it is generic and 

configurable and therefore easily adapted to various image processing applications. 

The characteristics of the application require that no data bottlenecks must appear 

for the maximum input data rate of 40 MHz. Therefore extensive exploration was 

executed to define the appropriate combination of buffering and parallelism to 

remove all possibilities of backpressure generation from the pixel clustering system 

to preceding processing modules. The implementation is modular and uses a moving 

window technique that exploits the 2D FPGA fabric to reduce data looping for 

clustering identification. Design parameters such as number of parallel engines, 

detection window size, etc. can change by simply changing a variable value in the 

design libraries. Therefore the implementation can be easily adapted to the 

performance requirements of the denser IBL detector with 100 MHz input data rate. 

Comparison with older FPGA clustering implementations demonstrates that 64 

times more hardware resources would be required to achieve equivalent 

performance. 

5.2. Future Work 

The work presented in this dissertation offers great opportunities for 

extended research in the future. 

The ILP model formulation presented in Chapter 2 is a tool for design 

optimization on a heterogeneous MPSoC early in the design development process. A 

target for the future is the transformation of this model to an automated tool using a 

parser and compiler. For this tool the description of the application and the 

specifications of the architecture would be required as input. The application would 

be described as a task graph, while the architecture as preset constant values or as 

variables with preset maximum and minimum values to describe system 

characteristics such as number of processing elements, maximum available memory, 

total available area etc. These variables will set the boundaries for the design space 

exploration execution. 
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The current power and temperature model formulation can produce 

estimation at an early design development time. For improving accuracy more 

details such as thermal diffusion properties of the device and possible neighboring 

of the processing elements can be added, as the additive effect of temperature is 

influenced by the processing elements neighborhood temperatures apart from the 

one generated by the processing element itself. 

The work on image processing implementations in Chapter 3 and Chapter 4 

is highly correlated. The moving window approach proposed for 2D pixel clustering 

in Chapter 4 can be adapted to be used for flow detection in machine vision systems 

like the one presented in Chapter 3. Flow detection in the Machine Vision system is 

already executed by using detection windows. As the moving windows in the Pixel 

Clustering implementation are also generic in size, the clustering algorithm can be 

used to identify the menisci of the flows by using only the active pixels that are 

within direct neighborhood of each other, thus increasing even more the precision of 

the implementation. The center of mass and median modules can be used as a post 

processing step for the clustering implementation, as it is already suggested in 

Chapter 4. 

In addition, a faster 2D pixel clustering implementation for the IBL detector is 

planned, which will use a bigger number of parallel engines and appropriately 

adjusted hit decoder and centroid calculation modules (based on the different 

dimensions of the IBL pixel module). Using a more advanced Artix 7 device will also 

increase performance and leave more resources available on the reconfigurable 

device to exploit more complicated post processing implementations, such as neural 

networks (as is currently the case in the ATLAS offline code). 

Another research approach could be the use of the Associative Memory 

boards of the FTK system to execute fast pattern matching for edge detection 

purposes and then adjust appropriately the 2D pixel clustering implementation as a 

post processing step for data reduction. The principle behind this implementation is 

the idea presented by M.M. Del Viva in [152]. 

The experience gained by the researcher on the operation of the Fast TracKer 

system and its parallel data flow led to the assignment of the responsibility of the 
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hardware monitoring modules development for the complete system. System 

modules that identify the loss of data synchronization, monitor the data flow and 

flag or possible execution critical errors will be developed. 
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Appendix A 

31:0 LVL1ID

Decoder Input

Normal Word:

31:0 Hit Information and  Control Words

26 22232425 21 1718192032 031 27282930 6 2345 116 12131415 11 78910End Event Word:

31:0 LVL1ID
EE

26 22232425 21 1718192032 031 27282930 6 2345 116 12131415 11 78910

Decoder Output

Hit Word:

27:20 ToT

26 22232425 21 1718192032 031 27282930 6 2345 116 12131415 11 78910End Module Word:

EM

19:12 Column 8:0 Row

26 22232425 21 1718192032 031 27282930 6 2345 116 12131415 11 78910End Event Word:

EE

26 22232425 21 1718192032 031 27282930 6 2345 116 12131415 11 78910

Grid Clustering Output

Local Hit Word:

27:20 ToT

26 22232425 21 1718192032 031 27282930 6 2345 116 12131415 11 78910End Cluster Word:

EC

15:12 Local Column 3:0 Local Row

26 22232425 21 1718192032 031 27282930 6 2345 116 12131415 11 78910End Module Word:

15:0 Module Number
EM

26 22232425 21 1718192032 031 27282930 6 2345 116 12131415 11 78910End Event Word:

31:0 LVL1ID
EE

Split
19:12 Reference Column 8:0 Reference Row
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15:0 Module Number
MH

Bit 
Error

Bit 
Error

Error Flags

3540 36373839

Dropped 
Hits

Full 
LIFO

Full 
Circ 
Buff

33

33

33

33

33

33

33

33

33

3441

26 22232425 21 1718192032 031 27282930 6 2345 116 12131415 11 7891033

Start Event Word:

31:0 LVL1ID
SE

26 22232425 21 1718192032 031 27282930 6 2345 116 12131415 11 7891033

Start Event Word:

31:0 LVL1ID
SE

26 22232425 21 1718192032 031 27282930 6 2345 116 12131415 11 7891033

Start Event Word:

31:0 LVL1ID
SE

26 22232425 21 1718192032 031 27282930 6 2345 116 12131415 11 7891033

FE 
order

Loss
Sync

 

Figure 5.1. The 2D-Pixel Clustering Internal Data Format 
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Figure 5.2. Grid Clustering Module Flow Chart 



 151 
 

26 22232425 21 17181920 031 27282930 6 2345 116 12131415 11 78910

Column Width Column Coordinate Split Row Width Row Coordinate

 

Figure 5.3. Pixel Centroid Data Format 

TABLE 5.1. Bit by Bit Description of the 2D-Pixel Clustering Centroid Word 
Format 

Bits Content 

0-11 Row Coordinate (Integer – Normalized Units of 6.25 um for Rows) 

12-14 Row Width: 3 bits give us a range of 0 to 7. We consider minimum Row Width 

to be 1 and maximum Row width to saturate to 8. 

Explanation:  

Actual Row Width 1  Representation “000”  (0) 

Actual Row Width 2  Representation “001” (1) 

Actual Row Width 3  Representation “010” (2) 

….. 

Actual Row Width 8  Representation “111” (7) 

Actual Row Width ANY NUMBER OVER 8  Representation “111” (7) 

15 Potentially Split Cluster Bit (As defined in Grid Clustering Module) 

16-27 Column Coordinate (Integer – Normalized Units of 25 um for Cols) 

28-30 Col Width: 3 bits give us a range of 0 to 7. We consider minimum Col Width to 

be 1 and maximum Col width to saturate to 8. 

Explanation:  

Actual Col Width 1  Representation “000”  (0) 

Actual Col Width 2  Representation “001” (1) 

Actual Col Width 3  Representation “010” (2) 

….. 

Actual Col Width 8  Representation “111” (7) 

Actual Col Width ANY NUMBER OVER 8  Representation “111” (7) 
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Figure 5.4. Hits per Pixel Module 

 

Figure 5.5. Bounding Box Size for Pixel Clusters 
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Appendix B 

5.3. The FTK_IM Mezzanine Top Level  

The FTK_IM Board has two Spartan-6 LX150T FPGA devices mounted on each 

board. The two FPGA devices have identical firmware implementations. 

The top level block diagram of the FTK_IM FPGAs is presented in Figure 5.6. 

There are two parallel data flows implemented on each device, one for the SCT data 

processing and one for Pixel Data processing. Each data flow receives data from the 

Inner Decoders RODs through a GTP connection. The GTP data stream is handled by 

a SerDes module and following the SerDes module and S-LINK Receiver module 

(LDC) is implemented to decode the S-LINK data format. The output of the S-LINK 

Receiver module is a stream of data words with a clock cycle of 40 MHz.  

The output of the S-LINK Decoder is captured by a SpyBuffer (the Input 

SpyBuffer of the IM Board) and is forwarder to the two ID_Cluster modules. A 

SpyBuffer is a circular buffer that continuously stores data processed from the 

system in strategically chosen points. SpyBuffers are used to monitor data 

processing and debug the system. The ID_Cluster modules are the wrappers that 

handle the interface to the two clustering modules (for SCT and Pixel). The output of 

the ID_Cluster modules is again captured by a SpyBuffer (the Output SpyBuffer of the 

IM Board) and also forwarded to the SenderDF module. 

The SenderDF modules use a DDR logic working at 200 MHz to propagate 

data to the Data Formatter FPGA through an LVDS bus. The data are propagated at 

50 MHz of 6 bits x 8 - 50 MHz x (32 bits data + control bits).  

In addition there are control modules to control the available digital clocks 

(DCM, BCOmanager etc.) as well as modules to handle the communication interfaced 

between the IM board and the DF board. Two protocols are available: I$^2$C and 

SerDes. The I2C is used to program the onboard memories, access the SpyBuffers 

and the monitoring registers. The SerDes protocol is a faster alternative to I2C. 
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The FTK_IM JTAG chain (for FPGA programming etc.) is controlled by a DIP 

switch and can be either used through an external connector directly on the IM or 

through the FMC connector and the DF board. 

 

Figure 5.6. FTK_IM Firmware Top Level Block Diagram 

5.4. The ID_Cluster Modules  

The ID_Cluster Modules are the wrappers that act as an interface between the 

two clustering modules (SCT and Pixel) and the rest of the FTK_IM firmware (Figure 

5.7). 

The ID_Cluster wrapper for the SCT Clustering system consists of one Input 

FIFO, one Output FIFO and the interface that decodes the ATLAS Bytestream format 

for the start_event and end_event word packages to provide to the SCT Clustering 

module a clean stream of hits.  

The ID_Cluster wrapper for the Pixel Clustering system is more complex. The 

arriving data stream goes through an input FIFO before it arrives to a demultiplexing 

module. This module divides the incoming bytes stream to two data paths: a hit data 

path and a header/trailer (control word) path. The hit data path's contents are the 

hit data, module header/trailer words and start/end event words in the data format 

expected by the Pixel Clustering system (see Figure 5.1). The data are first 
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propagated to the SYS FIFO from where they are read by the Pixel System. The 

control word data path propagates the begin-of-fragment (B0F) and end-of-

fragment (E0F) word packets to the ROD FIFO. 

The output of the Pixel Clustering System is stored to the DATA FIFO. A data 

multiplexer merges the contents of the ROD FIFO and the DATA FIFO back to a single 

stream. The LVL1 ids on both streams need to match at all times. The merged stream 

is stored to the OUT FIFO and from there is propagated to the SenderDF module to 

be sent to the DF board. 

 

Figure 5.7. The ID_Cluster Modules Block Diagram 

5.5. FTK_IM Monitoring Software (SpyMon) 

The FTK_IM Monitoring Software (SpyMon) is a set of software functions 

developed by researchers from the University of Waseda (Japan) to extract 

monitoring information for the operation of the FTK_IM. The functions read the 

monitoring registers installed in the hardware and provide the information to the 

designer. Information includes status of all Finite State Machines, FIFO empty, full 

and almost full signals, current event number, previous event number, FIFO status 

and others. 
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Figure 5.8. SpyMon Screenshot – No Backpressure and Errors Identified 
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