The Associative Memory Chip

Saverio Citraro - University of Pisa & INFN

This project has received funding from the European Union's FP7 for research, technological development and demonstration under grant agreement n 324318 FP7-PEOPLE-2012-IAPP

Outline

- The Associative Memory (AM) chip Overview
- AM chip working principles
- Internal Architecture
- Applications:
 - High Energy Physics application
 - Image Pre-Filter
 - Image Understanding
- Conclusion

AM chip overview

- ASIC designed by INFN
- Made of CAM Matrix
- AM detects coincidences inside large independent data streams
- Was used for High Energy Physics Experiment
 CDF at Fermilab
- Will be used for High Energy Physics Experiment ATLAS at CERN
- We are working to improve features
- We would like to use this Hardware for Embedded system and real time applications

How could be used?

- Let me do this Example:
 Hypothetic Situation (just to explain the idea)
- **Hundreds** of **measurements** from different sensors like thermometers, anemometers, barometers .
- AM searches for **coincidences** between the different input **data streams**.
- Training Phase: for a growing tornado.
- Analysis Phase: Acquire data and look the response.
- In order to **improve** the **efficiency** of the system, we can **update** the significant **data** in the **memory**, learning from the "past experience".

Internal Architecture

The **INPUT** buses could be **asynchronous**: the **matches** are **independent**!

- CAM cell Matrix
- CAM cells grouped1 Pattern = 8 CAMs
- Each Word = 16 bit
- .128K Patterns
- Each CAM cell has a dedicate Flip-Flop
- All CAMs check their data with the data bus in one clock cycle
- Check 100 T Word/s

Working Example

Majority and Readout

- The Patterns have a Majority Logic
- The Majority Threshold is Programmable
- If the Matches are more then the threshold

Readout address

Variable Pattern resolution

- **Set** a different **resolution** for each CAM in the **Pattern**.
- Each CAM cells could use from
 2 up to 6 don't care bits (LSB).
- Tune cells width on the input source
- Save memory space when a lower resolution data is enough to identify the coincidence.

Some other Features

• IP from Silicon Creations:

SerDes LVDS @ 2.4 Gbit/s

- •Input bandwidth = 8 bus x 2.4 Gbit/s = 19.2 Gbit/s
- Output bandwidth = 2.4 Gbit/s
- Internal Logic Speed 100 MHz
- Power supply:

2.5V I/O

1.2V Std cell logic

1V Full Custom cell

- Total Power consumption 2.5W
- Final Package: HSBGA 529, 23 mm²

High Energy Physic Applications

This is a product of two proton bunches collision; the Associative Memory does:

- Analyzes thousand of tracks in each event to decide in few microseconds which one are good enough to be stored.
- Solves the huge combinatory problem exploiting its parallelism.
- **Provides** a full list of high resolution tracks to High Level Trigger algorithms for each event.
- Event size: 1.5 Mbyte; event rate: 100kHz; Total system bandwidth 150 Gbyte/s

Applications outside of HEP:

• AM chip in the low level

AM chip in the high level

Image pre-filter: Michela Del Viva algorithm (previous talk)

•Store in the memory the significant patterns (Es. 3x3) to recognize the image.

•B/W

2⁹=512 patterns

•B/W + time

2²⁷= 128 M patterns

- Reconstruct the image accepting only patterns that match the stored ones
- The result is a compressed image, where is possible to recognize the relevant features

a

Accepting only these 16 stored

patterns:

4 grey level: 2000 stored patterns

1/64 di 1 chip = 50 mW

AM chip in the high level

- CAM based, high density and high mach rate
- Independence between input
- Majority Logic
- Don't care bits
- High bandwidth

- We are studying the possibility to use this HW in the "Image Understanding" phase
 - Binary classification
 - Machine learning

Conclusion

- AM chip Hardware architecture
- Useful Features
- HEP Application
- Outside HEP Applications

Thank You!

Are there any questions?

Email: saverio.citraro@for.unipi.it

Backup

Variable Pattern resolution, Memory space

- The coincidence to be find:
 - $28,0^{\circ} < T < 28,9^{\circ}$ AND P=1010 mBar ecc. AND V=5 m/s
 - Without don't care bits I have to store:

```
28,0° 1010 mBar 5 m/s ...

28,1° 1010 mBar 5 m/s ...

28,2° 1010 mBar 5 m/s ...

...

28,9° 1010 mBar 5 m/s ...
```

• With don't care bits I can store:

28,X° 1010 mBar 5 m/s ...

ATLAS silicon detector

- FTK reconstructs charged particles trajectories in the silicon detector (Pixel & SCT) at "1.5 trigger level".
- Extremely difficult task
 100KHz processing rate
 ~70 overlapping events (pile-up) at highest luminosity.

FTK Architecture

Pattern matching

- Pattern Bank: All the possible patterns (low resolution real track candidates) are precalculated and stored in the Pattern Bank.
- Pattern matching: All the hits in each event are compared with all the patterns in the Bank and track candidates (ROADs) are found.
- Track Fitting: Fits of the full resolution silicon <u>HITs</u> contained in each ROAD determine particle tracks parameters.

Processing Unit

