Variable resolution Associative Memory for the Fast Tracker ATLAS upgrade

Alberto Annovi

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Fast tracking in Pixel and SCT detectors

Detector and trigger coverage up to $|\eta| < 2.5$

FTK processes all level-1 accepted events (100kHz), it provides tracks for level-2 algorithms Output: all tracks down to $p_T>1$ GeV. Typical latency ~100 μ s

Advantages: high-bandwidth connection with detector & HW optimized for the specific tasks

FTK part 1: Associative Memory

• AM Pattern recognition – find track candidates with enough Si hits

- O(10⁹) prestored patterns simultaneously see the silicon hits leaving the detector at full speed.
- This pattern recognition step is essential to reduce the combinations for the following fit procedure.
- The AM outputs patterns that match 7 out-of 8 layers: called roads.

FTK part 2: Linearized Track Fit

Over a narrow region in the detector, equations linear in the local silicon hit coordinates give resolution nearly as good as a time-consuming helical fit.

$$p_i = \sum_{j=1}^{16} a_{ij} x_j + b_i$$

16D coord. space of hit combinations

5D track surface

- p_i 's are the helix parameters and χ^2 components.
- $-x_i$'s are the hit coordinates in the silicon layers.
- $a_{ij} \& b_i$ are prestored constants determined from full simulation or real data tracks.
 - » The range of the linear fit is a "sector" which consists of a single silicon module in each detector layer.
- This is VERY fast in FPGA DSPs approx 1 Gfit/s/FPGA
- Based on Principal component analysis

j.nima.2003.11.078, and H. Wind, CERN-EP-INT-81-12-REV, 1982

Associative Memories

• First AM for HEP idea

- Search its entire memory at each clock cycle: fast pattern recognition
- Inspired from Content Addressable Memories (CAM)
- M. Dell'Orso, L. Ristori
- NIM A **278, 436 (1989)**
- First application: SVT @ CDF
 - Seeded by drift chamber tracks
 - Look for associated Silicon hits at radii 2.5-10.5cm
 - Started with 384k patterns
 - Upgraded to 6M patterns

Extrapolate to inner silicon layers

We discuss the architecture of a device based on the concept of associative memory designed to solve the track finding problem, typical of high energy physics experiments, in a time span of a few microseconds even for very high multiplicity events. This "machine" is implemented as a large array of custom VLSI chips. All the chips are equal and each of them stores a number of "patterns". All the patterns in all the chips are compared in parallel to the data coming from the detector while the detector is being read out.

A. Annovi - September 24th, 2013

AM for ATLAS

- Silicon only trackers
- High luminosity → high detector occupancy
- Thousand tracks / bunch crossing <µ>=20

- For AM to reduce information
 - Needs very high resolution
 - Needs billions of patterns
 - Needs faster clock of 100MHz
 - Can profit from today electronics
 - Requires O(8k) of AM chips
 - Need also a new kind of Associative Memory!!

25 reconstructed vertex + $Z \rightarrow 2\mu$

Up to <µ>=80 by 2019; <µ>=200 by 2023 HL-LHC [CERN-LHCC-2012-022]

A. Annovi - September 24th, 2013

AM working principle

Pattern matching is completed as soon as all hits are loaded. Data arriving at different times is compared in parallel with all patterns. Unique to AM chip: look for correlation of data received at different times.

A. Annovi - September 24th, 2013

AM technological evolution

• (90's) Full custom VLSI chip - 0.7μm (INFN-Pisa)

- 128 patterns, 6x12bit words each, 30MHz
- F. Morsani et al., IEEE Trans. on Nucl. Sci., vol. 39 (1992)

Alternative FPGA implementation of SVT AM chip

P. Giannetti et al., Nucl. Intsr. and Meth., vol. A413/2-3, (1998)

G Magazzù, 1st std cell project presented @ LHCC (1999)

Standard Cell 0.18 $\mu m \rightarrow 5000$ pattern/AM chip SVT upgrade total: 6M pattern, 40MHz A. Annovi et al., **IEEE TNS,** Vol 53, Issue 4, Part 2, **2006**

AMchip04 –65nm technology, std cell & full custom, 100MHz Power/pattern/MHz ~30 times less. Pattern density x12. First variable resolution implementation!

F. Alberti *et al 2013 JINST 8 C01040, doi:10.1088/1748-0221/8/01/C01040*

AM technological evolution

AMchip04 –65nm technology, std cell & full custom, 100MHz Power/pattern/MHz ~30 times less. Pattern density x12. First variable resolution implementation!

F. Alberti *et al 2013 JINST 8 C01040, doi:10.1088/1748-0221/8/01/C01040*

Generatig the pattern bank

High efficiency with less patterns (hardware) BUT more fakes More patterns (hardware) for same efficiency less fakes Fakes are workload for track fitter

Pattern bank size and efficiency

of patterns in AM chips (barrel only, 45 ϕ degress)

<# matched patterns/event @ 3E34> = 342k <# matched patterns/event @ 3E34> = 40k

roads (large fake fraction) represents the workload for the track fitter

14th ICATPP Conference

Pattern bank size and efficiency

Variable resolution with "don't care" (DC) bits

l				
	-	F	FF	
		- 2	-	
	88			
				UT.

- For each layer: a "bin" is identified by a number with DC bits (X)
- Least significant bits of "bin" number can use 3 states (0, 1, X)
- The "bin" number is stored in the Associative Memory
- The DC bits can be used to OR neighborhood high-resolution bins, which differ by few bits, without increasing the number of patterns

Pixels:

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31

Using binary format "01010" selects bin 10 "0001x" selects bins 2 or 3 "1x000" selects bins 16 or 24 "0x11x" selects bins 6,7,14, or 15 "111xx" selects bins 28 to 31

AMCHIP04: VARIABLE RESOLUTION

Implemented with the "don't care" feature: inspired by the Ternary CAMs

- Increases the width of a pattern only when needed
- Fully programmable
- Wider patterns can be used in high occupancy regions, smaller patterns in low coverage regions (where the number of trajectories is low, thus reducing the fakes)
- The choice of wider or narrower width patterns is made layer by layer with simulation

The patterns: a different point of view

Many-bits variable resolution

We can use multiple DC bits to increase the compression factor (up to 6 per layer in a AMchip04)

1-bit variable resolution

3-bit variable resolution

Many-bits variable resolution

We can use multiple DC bits to increase the compression factor (up to 6 per layer in a AMchip04)

Many-bits variable resolution

We can use multiple DC bits to increase the compression factor (up to 6 per layer in a AMchip04)

Performance (max 1 DC/layer)

AM thin channel grouping: Pixels: 12 along ϕ , 36 along η Strips: 10 strips

Pileup events	config	Max # DC bits / layer	# roads / 45°	# patterns
75	AM large patterns	0	53500	138M
75	AM w/ DC	1	8250	138M
75	AM thin patterns	0	5950	384M

- Pattern bank reduction factor: ~ 3
- AM with DC capability reduces the fakes by a large factor: ~ 7
- Good performance with almost same HW

Pattern shape optimization

Figure 3: Effect of different choices of pattern shape: at fixed number of patterns the shape obtained with the formula described in the text yield the smallest volume (continuous line)

A working configuration for the Fast Tracker

- High resolution patterns: (15x36)_{pix}x16_{sct}
 - Pixels: 15 channels along ϕ , 36 ch. along η
 - Strips: 16 strips

DC bits group detector channels together and increase the pattern resolution

26

55

- Background events with 69 superimposed pp collisions
 - Instantaneous luminosity 3*10³⁴ Hz/cm²
- Hardware constraints (for each of 64 η - ϕ towers) •
 - # AM patterns < 16.8 * 10⁶

 $(30x72)_{\text{pix}}x32_{\text{sct}}$ $2_{\text{pix}}x1_{\text{sct}}$

 $(30x72)_{pix}x32_{sct}$ $2_{pix}x1_{sct}$

- # roads/event < 16 * 10³
- # fits/event < 80 * 10³

Work load for track fitter Max # **# AM** Efficien fits / evt * Coarse roads / evt * 10³ **10**³ resolution DC bits pattern **cy** % * 106 roads / layer

93.3%

91.2%

3.2

6.9

Barrel

Endcap

16.8

16.8

Summary

- An innovative algorithm has been introduced in the new FTK AM chips
 - The pattern resolution can be configured layer-by-layer and patternby-pattern
 - The use of DC bits increases the resolution only where needed
 - High rejection of fake coincidences → the number of roads out of AM is reduced greatly
- Limited "cost": AM chip area ~+15%; power ~+5%
- Equivalent to a factor 3-5 (or more) extra patterns
 - Not fully exploited yet
- Any coincidence based trigger can profit from this feature