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Abstract—Amulti-core FPGA-based 2D-clustering implementa-
tion for real-time image processing is presented in this paper. The
clustering algorithm is using amoving window technique to reduce
the time and data required for the cluster identification process.
The implementation is fully generic, with an adjustable detection
window size. A fundamental characteristic of the implementation
is that multiple clustering cores can be instantiated. Each core can
work on a different identification window that processes data of in-
dependent “images” in parallel, thus, increasing performance by
exploiting more FPGA resources. The algorithm and implementa-
tion are developed for the Fast TracKer processor for the trigger
upgrade of the ATLAS experiment but their generic design makes
them easily adjustable to other demanding image processing appli-
cations that require real-time pixel clustering.

Index Terms—Clustering methods, field programmable gate ar-
rays, image analysis, multiprocessing systems, particle tracking.

I. INTRODUCTION

T HE development in image detector technology in the re-
cent years has led to a great increase in resolution as well

as the amount of produced data. These high-resolution detectors
are used in a vast variety of applications from simple everyday
use to the demanding applications of high-energy physics, as-
trophysics, security and biomedical science. Additionally, the
majority of these applications call for real-time data capture at
high input rates. Taking into account the computationally inten-
sive image processing algorithms used to process the captured
data, the demand for effective data reduction techniques, such
as clustering [1]–[4] and edge detection [5]–[8], is increasing.
In this paper we present a general-purpose high-performance
2D-clustering implementation for zero-suppressed input data,
which is easily adjustable to a variety of application domains.
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A review of most clustering algorithms is presented in [1]
by Casagrande et al. These are iterative algorithms where
data are clustered with respect to an objective function. These
algorithms are suitable for data mining but they are too compli-
cated to be implemented in hardware for high data throughput
applications. Hussain [9] presents a K-means clustering field
programmable gate array (FPGA) implementation that requires
0.723 ms to group a 2905-point dataset to eight clusters.
Shanthi [10] demonstrates an FPGA implementation of a
histogram based clustering algorithm. This implementation
executes segmentation of a pixel input in a few
seconds. FPGAs have been also used as hardware accelerators
for image segmentation processes executed by a CPU, such
as in [11], where the FPGA is only used to speed up specific
mathematic functions. In [12] an image segmentation approach
using logarithmic arithmetic is again implemented on an FPGA
device, but the performance results are inconclusive because of
lack of available FPGA area for the complete system. Yamaoka
et al. [13] present a pattern matching implementation archi-
tecture on an FPGA for input images of pixels. The
implementation uses an image segmentation cell-network for a
region-growing algorithm. The principle behind this network
has similar characteristics with our approach. However, the
cell-network in [13] is used only to extract the size of a previ-
ously identified cluster, while in our implementation a cluster
identification window (grid) is used to detect the cluster itself.
All the above algorithmic implementations target unprocessed
data with common properties and have a low throughput be-
cause of iterative data processing. In the High-Energy Physics
application domain, clustering is used to do a first-level data
filtering such as in [14]. Gregerson et al. use two clusters
on adjacent towers from the cylindrical CMS detector to iden-
tify energy patterns that exceed a desired energy threshold on
the CMS calorimeter. The pixels are not zero-suppressed and
the cluster size and shape is fixed. Pattern matching is executed
on the deposited energy values. A universal clustering engine
for zero-suppressed pixel data is presented by Wassatsch and
Richter [15] for the Belle II experiment.
The clustering algorithm and implementation presented in

this work is designed to process data that are zero-suppressed.
The algorithm finds clusters built from all non-suppressed pixels
that are connected together sharing a side (first-order neighbor-
hood) or sharing a corner (second-order neighborhood). The
output of the clustering algorithm will be same as a single-
linkage clustering [16] with a maximum allowed merging-dis-
tance of . The presented implementation is an evolution of
a sliding clustering algorithm [2]. It uses an innovative moving
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Fig. 1. The 2D-clustering hit decoder module.

window approach to reduce the FPGA resources required for
the cluster identification process.

II. PIXEL CLUSTERING FOR THE ATLAS FAST TRACKER

The clustering implementation presented here is part of
the Fast TracKer processor (FTK) [17]. FTK is an approved
ATLAS [18] upgrade. The ATLAS experiment captures the
outcome of proton-proton collisions occurring every 25 ns
at its center with 100 million detector elements arranged in
cylindrical layers around the collision point. The data acquired
by these elements every 25 ns are called an “event”. The
Level-1 trigger of ATLAS accepts events at a rate of 100 kHz
and FTK has to provide a complete list of tracks to the ATLAS
High-Level Trigger (HLT) within s.
The FTK will receive data from the pixel and microstrip de-

tectors read out drivers (RODs) over 380 S-LINKs [19] running
at 2.0 Gb/s and, thus, the total input rate will be 760 Gb/s. Since
the hits from the silicon detectors need to be processed by subse-
quent algorithms, an early reduction of data optimizes the FTK
processing. The natural data reduction replaces a cluster of con-
tiguous hits with the position of the cluster centroid and the size
of the cluster. This is the target of the proposed 2D-clustering
implementation. The hard real-time requirement is achieved by
a multicore parallel architecture that can be implemented on the
available FPGA devices.
The presented 2D-clustering implementation receives data

from ATLAS pixel detector modules. The ATLAS pixel module
[20] has pixels. In worst-case conditions the occu-
pancy is about 0.4% pixels above the signal-to-noise threshold.
Data from a pixel module is equivalent to an image frame and
is processed independently of other modules. Thanks to the
zero suppression and depending on occupancy conditions, each
input link will deliver pixel module data at rate from 0.7 to
2.6 MHz. Our implementation performs clustering at full speed
processing all input data on the fly.
The 2D-clustering is implemented on the FTK Input Mez-

zanine cards (FTK_IM) which are installed on the FTK Data
Formatter boards [21][22]. On each FTK_IM card there are two
Xilinx Spartan-6 LX150 T FPGAs [23] that receive 2 S-LINKs
each, one from a microstrip ROD [24] and one from a pixel
ROD [20]. The latter transfers hits as 32 bit words at 40 MHz
rate. Each ROD will transmit data of level-1 accepted events
in sequence. The event data for one ROD contain the hits of
the detector modules connected to that ROD. The main chal-
lenge of the clustering implementation is to achieve the required

40 MHz hit processing rate for each S-LINK. We will evaluate
the implementation performance using simulated Monte Carlo
data for 80 overlapping proton-proton collisions that correspond
to the maximum LHC luminosity foreseen until 2022 [25]. For
ATLAS all overlapping collisions produce data simultaneously
and are seen as one event.

III. CLUSTERING IMPLEMENTATION

The 2D-clustering implementation will identify groups of
contiguous pixels compatible with a cluster and then reduce the
hit data to a single set of coordinates: the cluster centroid plus
a few bits of cluster shape and size information. The data are
received by an S-LINK decoder and are forwarded to a FIFO,
which is the source of data for the clustering implementation
presented here. Each hit is a 32 bit word which carries the hit
coordinates (column, row) and the Time-Over-Threshold (ToT)
value that contains the deposited charge information.
The clustering implementation is designed with a pipeline of

three separate modules: a) the hit decoder module; b) the grid
clustering module; c) the centroid calculation module.

A. Hit Decoder Module

The hit decoder (Fig. 1) transforms the incoming data from
the ATLAS raw data format to a format useful to the following
processing step. It is a pre-processing step that selects, formats
and organizes the information that is used by the clustering algo-
rithm such as start/end event words (the flag words that mark the
beginning and the end of an event in the bytes stream), module
headers/trailers (the flag words that mark the beginning and the
end of hits from one pixel module as well as themodule number)
and of course the pixel hits. This module is robust against bit er-
rors in the input data and it is tolerant to errors in control words.
The most important role of the hit decoder module is to prop-

erly align all the incoming data. Each ATLAS pixel module is
read out by 16 Front End chips (FE). The FE chips are organized
in two rows of 8 chips each. The data from each chip are read out
in column pairs. The data coming from each column pair are not
geographically sorted. FE chips are numbered from the bottom
right corner to the upper right corner in a clockwise cycle and
they are read out in the same sequence. This leads to half of
the pixel module data arriving in reverse column order than the
other half. The hit decoder module needs to restore the column
pair order of the hits since the grid clustering algorithm is based
on the sole assumption that the hits arrive sorted by column pair.
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Fig. 2. Elementary pixel cell.

There is no requirement on the order within the column pair be-
cause the grid clustering module can compensate for it.
To reverse the hit sequence a LIFO is used to store all the hits

that arrive from FEs with numbers from 0 to 7 (Fig. 1). When a
hit arrives from a FE chip with number from 8 to 15 it is stored in
a separate register. The value of the register is compared with
the last value stored in the LIFO and the hit with the smallest
column value is propagated to the next processing module. In
this way increasing column sequence is restored. The LIFO size
is 512 words, which is largely sufficient for the expected hit
occupancy in the pixel modules for up to 80 overlapping proton-
proton collisions. In the rare case that LIFO size is exceeded,
the logic will empty the LIFO completely and then continue to
process incoming data normally. The column order would then
be broken, but still valid for the two blocks of data before and
after the LIFO full. This would cause only the split of those few
clusters that have hits in both data blocks. This condition will
be recorded in an end-event-word error flag. Two small FIFOs
(16 words each) are added as input and output buffering stages
for synchronization purposes.

B. Grid Clustering Module

The grid clustering module is the one that actually identifies
the clusters and it is the most computationally intensive block
of the implementation. The module uses a “moving window”,
which is actually a rectangular grid of pixel cells of generic
size. Its size depends on the maximum expected cluster size per
application with the requirement to be large enough to fit this
cluster size in both dimensions. The pixel cell (Fig. 2) is a Finite
State Machine cell with three possible states (“empty”, “hit” and
“selected”) and is directly connected to all neighboring cells.
The “window” is “moving” in the sense that during the several
passes of the cluster identification process it is virtually placed
on different coordinates on the pixel module and it is filled every
time with data from different areas of the pixel module plane.
This module works properly under the assumption that input

data is sorted by column pair. The grid logic processes data from
two sources: an input FIFO that receives the hits from the hit
decoder and a circular buffer. Since incoming hits are sorted
by column pair, the grid and the circular buffer always store
data with column number smaller or equal to that of the hits
that are still in the FIFO. When the grid clustering module starts
processing the first data from a new pixel module, the circular
buffer is empty.

Fig. 3. Discrimination between hits that belong to the “window” and hits that
do not. The hits in the darker colored boxes are loaded in the circular buffer.

The clustering identification procedure is the following:
Reference hit selection: The identification of a cluster starts

with the selection of a reference hit. This hit must be the leftmost
available hit. When the circular buffer is empty the hit from the
input FIFO is selected as reference. Otherwise the leftmost hit
stored in the circular buffer is selected.
Grid placement: The grid is virtually aligned to have the refer-

ence hit placed on either column 0 or column 1 of the window.
The alignment column depends on whether the hit belongs to
an even or odd column of the pixel module. This is due to the
double column scrambling of the data from the pixel modules,
to allow for one column space for preceding hits arriving later.
Grid loading from the circular buffer: Hits are first read from

the circular buffer once. They are loaded in the grid if their coor-
dinates are within its boundaries. Hits outside the grid are stored
again in the circular buffer without using additional clock cycles
(Fig. 3). Every time the circular buffer is written the leftmost hit
is stored in a separate register. When a hit is stored in a cell, it
changes its state from “empty” to “hit”.
Grid loading from the input FIFO: Hits from the FIFO are

read until a hit with column coordinate beyond the grid’s right
boundary is found or until an end-of-module word is received.
In case the FIFO becomes empty the architecture waits for data.
Identically to the hits loaded from the circular buffer, the hits
from the input FIFO are loaded either into the grid if their coor-
dinates are within its boundaries or in the circular buffer.
At this point in the flow the grid is loaded with all hits that

belong to it. In addition, all data that fall outside the grid but
within the same column span are temporary stored in the circular
buffer.
Cluster identification: The cluster identification process starts

by using the reference hit as “seed” [Fig. 4(a): shadowed cell].
The reference hit, which is always in one of two positions on the
grid, is changed to “selected” state via a dedicated control line.
Cluster readout: The “selected” state is propagated to the 8

neighboring pixel cells [Fig. 4(b), (c): arrow demonstrating the
propagation]. Those that are in “hit” state change to “selected”
state. While the “selected” state propagates, the grid readout
logic is used to readout “selected” cells [Fig. 4(c), (d): black
dotted cells]. The cells that are readout return to the “empty”
state [Fig. 4(d): cell marked with horizontal lines].
At this point in the flow, only the cluster that was “seeded” is

found and readout. Hits that remain in the grid are not clustered
yet.
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Fig. 4. Cluster read out process.

Hit recovery: The hits that remain in the grid and do not be-
long in the cluster are readout and stored in the circular buffer
ready for the next processing step.
After one cluster is found the process is restarted.
For the current 2D-clustering module implementation a

“window” of pixels is used, 8 for the or direction
and 21 for the , ATLAS uses a right-handed coordinate
system with its origin at the nominal interaction point (IP) in
the centre of the detector and the -axis along the beam pipe.
The -axis points from the IP to the centre of the LHC ring,
and the -axis points upwards. Cylindrical coordinates ( )
are used in the transverse plane, being the azimuthal angle
around the beam pipe. Most clusters recorded by the ATLAS
pixel module (95%) fit within a box of 5 columns and 6 rows.
The bigger grid is used to allow identification of the rare large
clusters and clusters generated by merging hits from two or
more clusters. Clusters bigger than the grid size, i.e., clusters
extending from the reference hit beyond one of the grid edges,
will be split. Clusters that touch a grid edge will be identified
by a flag in the output, called the “split flag”. The “split flag”
bit is a dedicated bit in the cluster flag word.

C. Centroid Calculation Module

The centroid calculation module is the post-processing step in
the 2D-clustering implementation that performs the data reduc-
tion process. It is the module where the cluster data are replaced
with one set of coordinates, the centroid coordinates. For each
cluster a centroid value is calculated. The centroid value is cal-
culated as the center of each cluster’s bounding box. The pixels
of the ATLAS pixel modules have two different sizes on the
axis: the pixels at the edges of the FEs are m long, while
all others are m long. The centroid calculation module
corrects this difference by calculating the centroid coordinates
in normalized units of m for the axis and m for the
axis. The divisions required for the normalization process are

implemented in a Look-Up-Table (LUT).
The centroid can be corrected taking into account the charge

deposition in each hit measured by the Time-over-threshold
(ToT) information. This is done to replicate the ATLAS offline
code for centroid calculation that uses charge interpolation
described in detail in [26].
The post-processing step can be tailored on the application

(e.g., center-of-mass [8], median calculation [27], etc.).

IV. PARALLEL IMPLEMENTATION

One fundamental characteristic of this 2D-clustering imple-
mentation is that different clustering engines can work indepen-
dently and in parallel on data from different modules, therefore,
increasing performance by exploiting more FPGA resources. It
has been noted that the pixel data arrive through an S-LINK.Ad-
ditionally, the Data Formatter board also expects data through
a single data stream [21][22]. Choosing the appropriate paral-
lelization strategy is critical for the implementation’s perfor-
mance.
The parallelization strategy chosen for the presented imple-

mentation is to instantiate multiple clustering engines (grid clus-
tering modules) that work independently on data from sepa-
rate pixel modules (Fig. 5). The data acquired by each detector
module can be considered an independent image because clus-
ters are entirely contained in a single module. To achieve this,
data parallelizing (demultiplexing) and data serializing (multi-
plexing) logic modules are necessary. There are two issues that
require special attention. The execution cycles required for the
clustering identification process are data dependent. This leads
to unequal processing time per pixel module per clustering en-
gine. Additionally, the recovered single data flow after the par-
allel processing must be in the correct event order. To tackle
these issues a special parallel data distributor module and a data
merger module were designed.

A. Parallel Data Distributor Module

The pixel data arrive in a single data stream, packed by event
header and event trailer control words. The event header at the
input of the 2D clustering code is a single word made of the
ATLAS Level 1 ID number (event number) with a specific start
event flag. Within each event the pixel module data are packed
within module header and module trailer control words. The
processing time of one engine is strongly data dependent and,
therefore, it is impossible to predict which parallel clustering
engine will finish processing first. In addition, the data merger
module must be able to restore the data stream in the received



SOTIROPOULOU et al.: MULTI-CORE FPGA-BASED 2D-CLUSTERING IMPLEMENTATION FOR REAL-TIME IMAGE PROCESSING 3603

Fig. 5. 2D-clustering implementation parallel engines block diagram for the four-engine case.

event sequence. The parallel data distributor module must prop-
agate through the engines the event and module control words
in a way such that the data merger can retrieve the proper order.
Each parallel clustering engine is buffered by two FIFOs at

input and output. This is done to facilitate the design routing and
temporarily store input and output data while the clustering en-
gine is busy or the data merger has put the clustering engine on
hold. The input FIFO from each parallel clustering engine has a
write data counter activated so that the parallel data distributor
module can monitor which parallel engine has less data queued
at the input. As soon as the first event header appears at the input
of the parallel data distributor it is written to a LVL1ID FIFO
(Level 1 ID FIFO) as a reference for the received event header
sequence. The parallel data distributor chooses the clustering
engine where all pixel hits for one module will be propagated.
On first run, this is the engine with the smallest index number.
On all subsequent runs it is the engine with the smallest write
data counter value (clustering engine which currently has less
data queued at input). To identify the smallest write data counter
value a generic binary tree comparator was implemented. The
pixel module data are sent packed between the module header
and the module trailer words. If there are more than one pixel
module data in the event, another clustering engine is chosen
by the binary tree comparator that will receive the next pixel
module data. Multiple modules can be sent to each engine for
each event. For each engine receiving at least one module, the
event header is also sent before the first module in order to keep
the module-event association. When the event trailer arrives it
is sent to all clustering engines that have been assigned data be-
longing to this event, to close the event for all engines. The par-
allel distributor assigns to the engines pixel module data for new
events while the engines themselves are still processing pre-
vious event(s). The event trailer word is made by the LVL1ID
and an event trailer specific flag bit.

B. Data Merger Module

The data merger module begins its operation as soon as the
LVL1ID FIFO and one of the parallel clustering engines output
FIFOs have an event header at the output. It then compares the
event header with the one at the output of the LVL1ID FIFO and
if it matches it will start reading the data. If more than one par-
allel engine has the same event header then the engine with the
lowest index number is chosen (by using a priority encoder).
After the data from one pixel module are read out, the data
merger checks whether there are any more engines that have the
same event header or whether a second pixel module is loaded
in the same engine and reads out the corresponding FIFO.While
the data merger is busy reading the output FIFO of one parallel
engine, the other parallel engines continue normal operation and
write their outputs to the corresponding output FIFO, until this
FIFO is almost full. When the FIFO becomes almost full, back-
pressure is applied to the grid clustering module (read out oper-
ation is stalled), until the corresponding FIFO has free space for
data. When all the parallel clustering engines output FIFOs that
had data from the same event have the event trailer at the output
the event trailer is read out and the LVL1ID FIFO is read to get
the next event header and restart the event reading process. In
the extremely rare case when no engines have the same event
header as the LVL1ID FIFO this is declared a fatal error, it is
flagged in the output error word and the clustering module is
restarted.

V. RESULTS

The 2D-clustering implementation has been developed,
verified by simulation and tested on the FTK_IM board in both
single and parallel versions. Implementation results are pre-
sented for both the single and parallel flow versions. The most
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TABLE I
2D-CLUSTERING IMPLEMENTATION RESULTS FOR SINGLE FLOW

fundamental features of the FPGA fabric (flip-flops, LUTs, and
BRAMs) are used as metrics for the implementation size.

A. Single Flow Results

The 2D-clustering single flow implementation (results pre-
sented in Table I) occupies 0.9% of the device’s FFs, 3.4% of
the LUTs, 0.4% of the 18 kb BRAMs and 2.9% of the 9-kb
BRAMs. The small differences between the sum of resources
of the separate modules and the complete system are due to
different routing choices applied by the Xilinx PAR (place and
route) tool when the complete system is implemented. The extra
9-kb BRAM belongs to the output FIFO implemented after the
grid clustering module. The operational frequency is defined by
the grid clustering module’s critical path. The centroid calcula-
tion module calculates the center of the cluster bounding box in
normalized coordinates without taking into account the charge
deposition. In addition to the centroid calculation module, an in-
dicative implementation of a center-of-mass calculation is pre-
sented in [8] and of a median calculation in [27]. Both imple-
mentations are for the same FPGA device and have an operating
frequency much higher than 81.5 MHz. The center-of-mass im-
plementation uses 237 FFs and 409 LUTs while the median im-
plementation uses 215 FFs and 307 LUTs for a pixel
detection window. The center-of-mass, the median calculation
and the centroid calculation module have comparable area occu-
pation and shorter critical path than the grid clustering module,
therefore, it can be assumed that all three can be used as a final
processing step for the clustering implementation.
The 2D-clustering single flow engine has been verified by

both behavioral and post place and route simulations and mea-
surements on the actual FTK_IM board. A bit-accurate sim-
ulation model of the 2D-clustering has also been developed
to verify firmware operation. Post place and route simulations
using Monte Carlo files of 80 overlapping proton-proton col-
lisions have demonstrated a worst case estimate of roughly
ns processing time per data word. The firmware has been

tested on the FTK_IM board where a gigabit fiber was used to
deliver the data to the FTK_IM and read out the data from the
Data Formatter board. The Data Formatter board is acting as
a pass through and a computer is used as data source and data
sink. For the board test a 40 MHz clock was used for the input
FIFO of the hit decoder and a 80 MHz clock for the rest of the
implementation. In all the tests the output results have been con-
firmed by comparison with the bit-accurate simulation.
The input rate of the pixel clustering system is 40 MHz. This

means that at maximum throughput the pixel clustering system
will receive one data word every 25 ns. It can be calculated that
the ratio of processing time per data word over the input data

TABLE II
2D-CLUSTERING IMPLEMENTATION RESULTS FOR 4-ENGINE PARALLEL FLOW

time (themaximum input data rate for the single flow implemen-
tation) is ns ns . The single flow 2D-clustering im-
plementation is 3.4 times slower than the maximum input rate.
Since this is an iterating algorithm a deeper pipeline is not an op-
tion. Therefore, a parallel implementation is essential to achieve
the required performance. As the single flow implementation is
3.4 times slower than the maximum input data rate it can be an-
ticipated that the parallel engine implementation must have at
least 4 clustering engines working in parallel to achieve the re-
quired performance.

B. Parallel Flow Results

A four-engine version was implemented first. Then we ex-
plored the FPGA resource cost and maximum clock speed of
versions with 8 and 16 engines. Each version was designed and
verified through the Xilinx validation chain and its performance
was measured with post place and route simulation by using
worst case ATLAS simulated data. We initially found that the
4 engines did not have enough buffering at the output since the
data merger was applying backpressure. We explored the per-
formance as function of the output buffer and found a strong
correlation between the size of the output FIFOs on each clus-
tering engine and system performance. A sufficient size for the
output FIFOwas determined by simulation and testing measure-
ments to be 1024 words for each clustering engine.
This parallel flow version of four parallel clustering engines

was implemented and measured on the FTK_IM board. In
Table II the implementation results for the 4-engine parallel
flow with large buffering are presented. The new modules that
were introduced for the parallel design version, the parallel
data distributor, the binary tree comparator and the data merger,
occupy a very small percentage of FPGA resources with re-
spect to the total system. The total system occupies 3.1% of the
device’s FFs, 11.5% of the LUTs, 5.6% of the 18-kb BRAMs
and 3.5% of the 9-kb BRAMs. It can be seen that the number
of BRAMs that are required for the implementation with the
four parallel engines is greater than the number required for
the single flow when multiplied by four because of the extra
required buffering at the input and at the output of each parallel
clustering engine (FIFOs before and large FIFOs after Grid
Clustering modules in Fig. 5).
The clock performance is again defined by the grid clustering

module and the maximum frequency drops a little due to routing
to 80.5 MHz. The 4-engine parallel clustering flow has been
tested on the FTK_IM board. The board test was executed with
the same clock configuration as with the single flow, 40 MHz
clock for the input FIFO and 80 MHz for the rest of the im-
plementation. By using the same input data as with the single
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Fig. 6. Performance plot for the 2D-Pixel clustering implementation. Each line
represents the transit time of the last event word. The black continuous line is
input time. The blue dash dotted line is output time for the single flow. The green
dashed line is output time for the 4 parallel flow.

flow clustering implementation a worst case of ns pro-
cessing time per data word was estimated. This performance
covers the given specifications of maximum input data rate of
40MHz. In Fig. 6 a performance plot for the 2D-pixel clustering
implementation is presented. For this performance plot simula-
tion data from a hard scattering process ( ) overlap-
ping with 80 pile up proton-proton collisions were used. On the
-axis the event number is presented, while on the -axis the
absolute time an event exited the 2D-clustering implementation
(end_event output time). The continuous black line is the refer-
ence line that demonstrates the maximum input data rate, one
word every 25 ns. As it can be seen the single flow (dash-dot
blue line) cannot follow the input rate with a much higher slope
and a processing time of ns per data word. The 4 parallel
engine flow (dashed green line) is almost identical to the refer-
ence line, demonstrating that it can fully respond to the max-
imum input data rate. The above performance results demon-
strate that 4 parallel engines with large buffering are sufficient
for the ATLAS detector pixel modules. From these 100 events a
total of 21050 clusters were identified out of 58890 data words
(hits and control words). The results have been confirmed by
bit-accurate simulation.
A parallel version with 16 engines was also integrated for po-

tential more computationally demanding applications (such as
the Insertable B-Layer [28]). The goal of this implementation is
to demonstrate feasibility and to observe the achievable clock
speed. The implementation results for the parallel 2D-clustering
version with 16 clustering engines are presented in Table III.
This system version is implemented with output FIFOs of 128
words as the buffering requirements will be recalculated after
extensive testing with IBL data. The implementation uses 9.5%
of the device’s FFs, 38.8% of the device’s LUTs, 6.3% of the
18-kb BRAMs and 16.4% of the 9-kb BRAMs. As this imple-
mentation uses a significant percentage of the FPGA device re-
sources and has modules with a 16 times bus fan out, it is im-
portant to keep the critical path buffered in order to avoid per-
formance degradation. With the current parallel configuration a
80 MHz clock frequency was achieved.

TABLE III
2D-CLUSTERING IMPLEMENTATION RESULTS FOR 16-ENGINE PARALLEL FLOW

TABLE IV
EXTRAPOLATED RESULTS FOR SLIDING CLUSTERING ALGORITHM

The current implementation is an evolution of a sliding
clustering algorithm that had a much higher cost in terms of
FPGA resources [2]. In the sliding clustering algorithm a grid
of pixels was considered and it would have a compa-
rable fraction of split clusters. The grid clustering module of
the old sliding algorithm version has been re-implemented on
a Spartan-6 LX150 T device for direct comparison with the
current implementation. The extrapolated FPGA resources and
clock frequency results are presented in Table IV. Accounting
for the fact that the processing time of the sliding window
algorithm would be on average 3 clock cycles per hit, we can
determine that our implementation reduces the required logic
by a factor approximately 64.
The presented implementation works on zero-suppressed

data, therefore, it cannot be directly compared with the previ-
ously described algorithms in [9]–[14]. Wassatsch and Richter
[15] have presented a clustering implementation targeting
zero-suppressed data. In their approach the whole pixel frame
has to be read before the clusters can be identified, which
imposes a significant algorithmic delay. From the imposed
delay derives a hard requirement for a 400 MHz clock that
required the implementation of the algorithm on ASIC tech-
nology (TSMC 65 nm). A direct area comparison cannot be
made between [15] and our proposed implementation, but an
estimated logic gates are needed for the Wassatsch and
Richter implementation, while around logic cells are
used in our design on a Spartan- t FPGA device. An
important difference between the two implementations is that
the Wassatsch and Richter implementation does not have a
cutoff on the cluster size, while the presented clustering algo-
rithm does. The cutoff is not a limitation since for the typical
HEP pixel detector meaningful clusters are small, e.g., smaller
than [26].

C. Statistics

The outputs of the 2D-clustering implementations have been
verified by a bit-accurate simulation model. Using the same
model as well as the outputs of the FPGA firmware statistics for
the 2D-clustering performance were gathered. The most impor-
tant aspect of these statistics is the percentage of the identified
clusters that have an active “split flag” with the current
pixel detection window specifications. The “split flag” is active
whenever a cluster touches the grid (detection window) edge.
This is an indication, but not a confirmation, that the cluster
might be split. It was estimated that at most of all
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clusters will be flagged as split. Not all clusters with the “split
flag” are actually split. It is possible to reduce the fraction of
split clusters using a larger pixel clustering grid. For example
a grid would reduce the fraction of potentially split
clusters to . Our design is totally generic, therefore, ad-
justing the size is easily achievable. An implementation with
this larger grid was realized. The FPGA maximum clock speed
is reduced to 65 MHz (along with the fact that the number of
cycles required to process a hit increases to 4.7–by reference
to the 40 MHz input clock). This means that 8 engines can fit
on the Spartan-6 and process pixel data at full input speed, by
occupying 43% FPGA resources (LUTs). We have chosen the

grid size, that doesn’t split any cluster of size up to ,
since larger clusters are not of interest. They originate mostly
from tracks that are not from beam collision or from low trans-
verse momentum particles [26] that are not reconstructed by the
FTK. Furthermore, what matters is the fraction of split clusters
for tracks with transverse momentum above 1 GeV/s. The effect
on tracking performance is under study.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

A multi-core FPGA-based 2D-pixel clustering implementa-
tion is presented. The implementation targets the ATLAS Fast
TracKer but it is generic enough to be used in various images
processing applications where pixel clustering is required. The
implementation targets zero-suppressed data and uses a moving
window technique to reduce the FPGA resources required for
the cluster identification process. The proposed implementation
is an improvement by a large factor over previous approaches
to zero-suppressed data clustering, as it uses 64 times less logic
resources in comparison to [2]. The innate flexibility of the im-
plementation is that different clustering engines can work inde-
pendently and in parallel to improve performance while the post
processing step can be adapted to different applications’ needs.
Therefore, the proposed implementation can be used for var-
ious applications where 2D clustering of zero-suppressed data
is required with different performance requirements. One po-
tential application of this algorithm is the 2D-clustering for the
Insertable B-Layer (IBL) of the ATLAS Inner Detector with a
maximum pixel hit output rate of 100 MHz. A version with 4
parallel engines is currently implemented in the FTK system
while a 16 engine implementation is proposed for the IBL de-
tector.
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